Comparative Study on the Microstructural and Mechanical Properties of WC-Co/AISI 1020 Steel Brazed Joint Obtained by TIG and Oxyacetylene Process

Article Preview

Abstract:

In this work, the microstructural evolution and the mechanical properties of WC-Co / AISI 1020 steel brazed joint obtained by oxyacetylene and Tungsten Inert Gas (TIG) brazing process are investigated. The maximum peak temperature induced by TIG process and the introduction of a shielding gas cause a remarkable diffusion of Co and rearrangement of WC particles along the interface with the filler alloy. The Energy Dispersive Spectroscopy (EDS) analysis reveals that the inter-diffusion activity of elements across the interfaces especially Co and Ni is more important using TIG process compared to oxyacetylene process The mechanical behavior is carried out through micro-hardness measurements and toughness tests using Vickers Indentation fracture method on the WC-Co along the parallel line of the interface with the filler alloy. The results show that the brazed joint issued from TIG process becomes increasingly hard and brittle when approaching the WC-Co/braze interface and loses its toughness (7 MPa/m1/2 compared to 15 MPA/m1/2 for oxyacetylene process) with increasing the brazing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 18)

Pages:

41-48

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Sechi, K. Nagatsuka, and K. Nakata, Dissimilar laser brazing of h-BN and WC-Co alloy in Ar atmosphere without evacuation process,, J. Phys. Conf. Ser., vol. 379, p.12048, (2012).

DOI: 10.1088/1742-6596/379/1/012048

Google Scholar

[2] L. Emanuelli, M. Pellizzari, A. Molinari, F. Castellani, and E. Zinutti, Reprint of 'Thermal fatigue behaviour of WC-20Co and WC-30(CoNiCrFe) cemented carbide,', Int. J. Refract. Met. Hard Mater., vol. 62, p.176–182, (2016).

DOI: 10.1016/j.ijrmhm.2016.10.019

Google Scholar

[3] K. Nagatsuka, Y. Sechi, Y. Miyamoto, and K. Nakata, Characteristics of dissimilar laser-brazed joints of isotropic graphite to WC – Co alloy,, Mater. Sci. Eng. B, vol. 177, no. 7, p.520–523, (2012).

DOI: 10.1016/j.mseb.2011.12.014

Google Scholar

[4] H. Chen, K. Feng, J. Xiong, and Z. Guo, Characterization and stress relaxation of the functionally graded WC-Co/Ni component/stainless steel joint,, J. Alloys Compd., vol. 557, p.18–22, (2013).

DOI: 10.1016/j.jallcom.2012.12.152

Google Scholar

[5] M. I. Barrena, J. M. Gómez de Salazar, N. Merino, and L. Matesanz, Characterization of WC-Co/Ti6Al4V diffusion bonding joints using Ag as interlayer,, Mater. Charact., vol. 59, p.1407–1411, (2008).

DOI: 10.1016/j.matchar.2007.12.008

Google Scholar

[6] M. I. Barrena, J. M. Gómez de Salazar, and L. Matesanz, Interfacial microstructure and mechanical strength of WC-Co/90MnCrV8 cold work tool steel diffusion bonded joint with Cu/Ni electroplated interlayer,, Mater. Des., vol. 31, no. 7, p.3389–3394, (2010).

DOI: 10.1016/j.matdes.2010.01.050

Google Scholar

[7] M. Uzkut, N. K. Sinan, and B. S. Unl, The determination of element diffusion in connecting SAE 1040 / WC material by brazing,, vol. 169, p.409–413, (2005).

DOI: 10.1016/j.jmatprotec.2005.05.001

Google Scholar

[8] H. Chen, K. Feng, S. Wei, J. Xiong, Z. Guo, and H. Wang, Microstructure and properties of WC – Co / 3Cr13 joints brazed using Ni electroplated interlayer,, Int. J. Refract. Met. Hard Mater., vol. 33, p.70–74, (2012).

DOI: 10.1016/j.ijrmhm.2012.02.018

Google Scholar

[9] W. B. Lee, B. D. Kwon, and S. B. Jung, Effects of Cr3C2 on the microstructure and mechanical properties of the brazed joints between WC-Co and carbon steel,, Int. J. Refract. Met. Hard Mater., vol. 24, p.215–221, (2006).

DOI: 10.1016/j.ijrmhm.2005.04.003

Google Scholar

[10] R. Spliegler, S. Schmauder, and L. S. Sigl, Fracture toughness evaluation of WC-Co alloys by indentation testing,, J. hard Mater., vol. 1, no. 3, p.147–158, (1990).

Google Scholar

[11] S. Sheikh, R. M. Saoubi, P. Flasar, M. Schwind, T. Persson, J. Yang, and L. Llanes, Int . Journal of Refractory Metals and Hard Materials Fracture toughness of cemented carbides : Testing method and microstructural effects,, (2014).

DOI: 10.1016/j.ijrmhm.2014.08.018

Google Scholar

[12] D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Clauer, Indentation fracture of WC-Co cermets,, J. Mater. Sci., vol. 20, no. 5, p.1873–1882, (1985).

DOI: 10.1007/bf00555296

Google Scholar

[13] C. Jiang, H. Chen, Q. Wang, and Y. Li, Effect of brazing temperature and holding time on joint properties of induction brazed WC-Co / carbon steel using Ag-based alloy,, J. Mater. Process. Technol., vol. 229, p.562–569, (2016).

DOI: 10.1016/j.jmatprotec.2015.09.044

Google Scholar

[14] B. Cheniti, D. Miroud, R. Badji, D. Allou, T. Csanádi, M. Fides, and P. Hvizdoš, Effect of brazing current on microstructure and mechanical behavior of WC-Co/AISI 1020 steel TIG brazed joint,, Int. J. Refract. Met. Hard Mater., vol. 64, p.210–218, (2016).

DOI: 10.1016/j.ijrmhm.2016.11.004

Google Scholar