Effect of E6010 and E8018-G Fluxes Utilization on SMAW Multi-Pass Welded Steel

Article Preview

Abstract:

The aim of this work is to study the influence of the E6010 and E8018-G fluxes on the chemical composition, microstructure, formation of inclusions and micro hardness in different passes (P1, P2 and P3) of X42 welded steel. The marketed chemical composition of used fluxes is: E6010 and E8018-G, which have a low carbon electrodes. The fusion zone microstructure consists of acicular ferrite. The fluxes (FA and FC) have the high TiO2 and SiO2 contents respectively. The high content of Ti and Si, was also detected in the melted zones (P1 ,P2 and P3). The MnO2 oxide proportion in the fluxes (E6010, and E8018-G) is constant (0.94-0.99). However, the Mn content increases in the melted zones (P3 and P1). The highest percentages of Si and Mn was detected in the outer and inner passes respectively of melted zone, relatively to the base metal. The variation of the elements mass concentrations (Mn, Cr, Si and Ti) shows a contradictory variation on the three points in the melted zone passes (P1 and P3). White and black non-metallic inclusions are observed regardless the used flux. The micro-hardness in the multi-pass melting zone with the fluxes (E6010 and E8018-G) varies according to the variation of the equivalent carbon in the different filler metals.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 18)

Pages:

55-64

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.M. Paniagua-Mercado, V.M. L´opez-Hirata, M. L Chemical and physical properties of fluxes for saw of low-carbon steels. Instituto politécnico nacional , ESFM-ESIQIE, Mexico ,published online , (2011).

Google Scholar

[2] A.M. Paniagua-Mercado, V.M. L´opez-Hirata, M. L .Saucedo Munoz Influence of the chemical composition of flux on the microstructure and tensile properties of submerged-arc welds. Journal of Materials Processing Technology, 169, no ,3, (2005).

DOI: 10.1016/j.jmatprotec.2005.03.035

Google Scholar

[3] N. D. Pandey, A. Bharti and S. R. Gupta Effect of submerged arc welding parameters and fluxes on element transfer behaviour and weld-metal chemistry. J. Mater. Process. Technol, 40,(1994), 195-211.

DOI: 10.1016/0924-0136(94)90486-3

Google Scholar

[4] F. Khamouli, M. Zidani, H. Farh, A. Saoudi, and L. Atoui, Effects of Cellulosic and Basic Flux on the Structure, Composition and Hardness of SMAW Welds on Steel X42, International Journal of Engineering Research, 27,(2016) ,11-19.

DOI: 10.4028/www.scientific.net/jera.27.11

Google Scholar

[5] Chang, S. Wu, C. Fan, M. Chen and W. Wu Effect of carbonate in electrode coating on the microstructure and mechanical properties of weld , Mater. Chem. Phys, 112, (2008), 783-788.

DOI: 10.1016/j.matchemphys.2008.06.041

Google Scholar

[6] D. Ademola. Adeyeye and A .Festus .Oyawale Optimisation of weld-metal chemical composition from welding flux ingredients: A non-pre-emptive goal programming approach. Maejo International Journal of Science and Technology, 4, n°, 2, (2010).

Google Scholar

[7] S.U.I. Shao-hua , C.A.I. Wei-wei, L.I.U. Zhi-qiang, S.O.N.G. Tian-ge, ZHANG An Effect of submerged arc welding flux component on softening temperature. Journal of Iron and Steel Research International, 13, no ,2 , (2006),65-68.

DOI: 10.1016/s1006-706x(06)60047-2

Google Scholar

[8] H. Her-Yueh Effects of activating flux on the welded joint characteristics in gas metal arc welding. Materials and Design, 31, (2010), 2488-2495.

DOI: 10.1016/j.matdes.2009.11.043

Google Scholar

[9] G. S. Sidhu , S. S. Chatha Role of shielded metal arc welding consumables on pipe weld joint, International Journal of Emerging Technology and Advanced Engineering ,2,(2012).

Google Scholar

[10] G.M. Evans The effect of chromium on the microstructure and properties of C–Mn all-weld metal deposits. Weld Met Fabr, 57, no,7, (1989) ,346- 58.

Google Scholar

[11] J.C.F. Jorge, J.M. A. Rebello, G.M. Evans Microstructure and toughness relationship in C–Mn – Cr all weld metal deposits.(1990) ,454-461 IIW DOC.

Google Scholar

[12] J.C.F. Jorgea, L.F.G. Souzaa, J.M.A. Rebello The effect of chromium on the microstructure/toughness relationship of C–Mn weld metal deposits. Materials Characterization, 47, (2001),195- 205.

DOI: 10.1016/s1044-5803(01)00168-1

Google Scholar

[13] A. G. Fox, M. W. Eakes, G. L. Franke The effect of small changes in flux basicity on the acicular ferrite content and mechanical properties of submerged arc weld metal of Navy HY-100 steel. Welding Journal-Including Welding Research Supplement, 75, no,10 , (1996).

Google Scholar

[14] B. Beidokhti , A.H. Koukabi, A. Dolati Influences of titanium and manganese on high strength low alloy SAW weld metal properties. Materials Characterization, 60, no,3, (2009), 225-233.

DOI: 10.1016/j.matchar.2008.09.005

Google Scholar

[15] S. Murugan, Sanjai K. Rai, P.V. Kumar, T. Jayakumar, Baldev Raj, M.S.C .Bose Temperature distribution and residual stresses due to multipass welding in type 304 stainless steel and low carbon steel weld pads, International Journal of Pressure Vessels and Piping ,78, (2001).

DOI: 10.1016/s0308-0161(01)00047-3

Google Scholar

[16] H. Alipooramirabad, A. Kotousov, R. Ghomashchi Numerical analysis of welding stresses in WIC weldability test . 8th Australasian Congress on Applied Mechanics: ACAM 8, Melbourne ,(2014), 731-738.

Google Scholar

[17] A. Kotousov, K. Borkowski, L. Fletcher, R. Ghomashchi A model of hydrogen assisted cold cracking in weld metal. International Pipeline Conference: American Society of Mechanical Engineers, (2012), 329-334.

DOI: 10.1115/ipc2012-90385

Google Scholar

[18] H. Alipooramirabad, A.Paradowska, R.Ghomashchi, M. Reid Investigating the effects of welding process on residual stresses, microstructure and mechanical properties in HSLA steel welds. Journal of Manufacturing Processes, 28, (2017), 70-81.

DOI: 10.1016/j.jmapro.2017.04.030

Google Scholar

[19] S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints . Defence Technol , 11, (2015), 308-317.

DOI: 10.1016/j.dt.2015.06.001

Google Scholar

[20] W.W. Bose-Filho, A.L.M. Carvalho , M. Strangwood Effect of alloying elements on the microstructure and inclusion formation in HSLA multipass welds. Materials Characterization, 58, (2007), 29-39.

DOI: 10.1016/j.matchar.2006.03.004

Google Scholar

[21] Y.Li, Y.Liu, C.Liu, C.Li,Z.Ma, Y.Huang, Z.Wang, W.Li Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel. Journal of Materials Science & Technology,34, 4, (2018), 653-659.

DOI: 10.1016/j.jmst.2017.11.031

Google Scholar

[22] H. Ming, J.Wang, E.H. Han Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods. Materials Characterization, 139, (2018), 186-196.

DOI: 10.1016/j.matchar.2018.02.044

Google Scholar

[23] J.H. Tweed, J.F. Knott Micro mechanisms of failure in C-Mn weld metals. Acta Metall, 35, no ,7, (1987), 1401-1414.

DOI: 10.1016/0001-6160(87)90087-3

Google Scholar

[24] J.H. Tweed, J.F. Knott Effect of reheating on microstructure and toughness of C-Mn weld metal. Metal Sci, 17 ,(1983), 45-54.

DOI: 10.1179/030634583790427603

Google Scholar

[25] C. Zhang, B. Gong, C. Deng, D. Wang Effect of microstructure heterogeneity on microscopic stress triaxiality of a C-Mn weld metal. Journal of Manufacturing Processes, 32, (2018), 372-379.

DOI: 10.1016/j.jmapro.2018.03.003

Google Scholar

[26] C. Niclaeys, T.H. N'Guyen, S. Marie, S. Chapuliot, S. Degallaix Non-fracture prediction of a C-Mn weld joint in the brittle-to-ductile fracture transition temperature range. Eng Fract Mech, 79, (2012), 149-166.

DOI: 10.1016/j.engfracmech.2011.10.010

Google Scholar

[27] J. M .Dowling, J. M .Corbett, H. W. Kerr Inclusion phases and the nucleation of acicular ferrite in submerged arc welds in high strength low alloy steels. Metallurgical Transactions A, 17, no ,9,(1986) ,1611-1623.

DOI: 10.1007/bf02650098

Google Scholar

[28] A.M. Paniagua-Mercado, V.M. Lopez-Hirata, H. J. Dorantes-Rosales, P. E. Diaz, E. Diaz Valdez Effect of TiO2-containing fluxes on the mechanical properties and microstructure in submerged-arc weld steels,  Materials Characterizatio , 60, no ,1,(2009).

DOI: 10.1016/j.matchar.2008.06.003

Google Scholar

[29] B. Vargas-Arista , C. Angeles-Chavez , A. Albiter, J.M. Hallen Metallurgical investigation of the aging process on tensile fracture welded joints in pipeline steel. Materials characterization, 60, (2009) ,1561-1568.

DOI: 10.1016/j.matchar.2009.09.007

Google Scholar

[30] C. Ferdinand .Mise en œuvre et caractérisation d'assemblages soudés par procédés TIG et laser de tôles d'alliages de titane réfractaires, doctorate thesis, National Polytechniqual Institut , Toulouse, (2005).

Google Scholar

[31] A. Güral, B. Bostan, A. T. Özdemir: Materials and Design, 28, no,3, (2007) , 897-903.

Google Scholar

[32] Z. Boumerzoug, K. Digheche, V.Ji X-Ray Analysis of Residual Stress in Weld Region of X70 Pipeline Steel . Advanced Materials Research,936, (2014), 2011-(2016).

DOI: 10.4028/www.scientific.net/amr.936.2011

Google Scholar

[33] J. E. Ramirez Characterization of high-strength steel weld metals: chemical composition, microstructure, and nonmetallic inclusions, Welding Journal-New York, 87, no ,3 ,(2008), 65.

Google Scholar

[34] J.F. Lancaster, Metallurgy of Welding, Alden Press Ltd , London, (1980), 25-50.

Google Scholar

[35] P. Sathiya, M. K. Mishra, B. Shanmugarajan: Materials and Design,33, (2012), 203-212.

Google Scholar

[36] S. Bordbar, M. Alizadeh, S. H. Hashemi: Materials and Design,45,(2013), 597-604.

Google Scholar

[37] K. Digheche, Z. Boumerzoug, M. Diafi, K. Saadi Influence of heat treatments on the microstructure of welded API X70 pipeline steel, Acta Metallurgica Slovaca, 23, no, 1, (2017), 72-78.

DOI: 10.12776/ams.v23i1.879

Google Scholar