[1]
Steinberg et al, Net shape technology in aerospace structures volume 1, Washington, (1986).
Google Scholar
[2]
H.Sueyoshi et al, preparation and wear properties of discontinuous ceramic fibre reinforced iron alloy by low isostatic press sintering, Materials sciences and technology Vol. 27 No. 8 (2011) 1347-1352.
DOI: 10.1179/026708310x12701095964685
Google Scholar
[3]
W.T. Kent, processing and properties of high speed tool steel, powder metallurgy Vol.25 No.1 (1982).
Google Scholar
[4]
Z. Oksiuta et al, Relation between microstructure and Charpy impact properties of an elemental and pre-alloyed 14Cr ODS ferritic steel powder after hot isostatic pressing, J Mater Sci (2010) 3921–3930.
DOI: 10.1007/s10853-010-4457-9
Google Scholar
[5]
H.El Rakayby, K. Kim, effect of glass container encapsulation of deformation and densification behaviour of metal powders during hot isostatic pressing, Int J Mater Form (2017).
DOI: 10.1007/s12289-017-1361-8
Google Scholar
[6]
ADAM J.cooper et al, Effect of oxygen content upon the microstructural and mechanical properties of type 316L austenitic stainless steel manufactured by hot isostatic pressing, Metallurgical and materials transactions A Vol.47 (2016) 4467-4475.
DOI: 10.1007/s11661-016-3612-6
Google Scholar
[7]
ADAM J.cooper et al, A microstructural study on the observed differences in charpy impact behavior between hot isostatically pressed and forged 304L and 316L austenitic stainless steel, Metallurgical and materials transactions A Vol.46 (2015).
DOI: 10.1007/s11661-015-3140-9
Google Scholar
[8]
Khamis Essa et al, Porosity control in 316L stainless steel using cold and hot isostatic pressing, Materials and design (2017).
DOI: 10.1016/j.matdes.2017.10.025
Google Scholar
[9]
K.S.CHO et al, Effect of Ti Addition on Carbide Modification and the Microscopic Simulation of Impact Toughness in High-Carbon Cr-V Tool Steels, Metallurgical and materials transactions A Vol.47A, (2015) 26-32.
DOI: 10.1007/s11661-015-3216-6
Google Scholar
[10]
INGRID PICAS et al, R-Curve Approach to Describe the Fracture Resistance of Tool Steels, Metallurgical and materials transactions A Vol. 47A(2016) 2739-2754.
DOI: 10.1007/s11661-016-3455-1
Google Scholar
[11]
Kuo-Tsung HUANG et al, Microstructures and Mechanical Properties of TaC Added to Vanadis 4 Tool Steel through Vacuum Sintering and Heat Treatments, ISIJ International Vol. 57 No.7 (2017) 1252–1260.
DOI: 10.2355/isijinternational.isijint-2017-033
Google Scholar
[12]
C. García et al, Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy, Materials Characterization 121 (2016) 175–186.
DOI: 10.1016/j.matchar.2016.10.001
Google Scholar
[13]
P. Harlin and M. Olsson Abrasive wear resistance of starch consolidated and sintered high speed steel, Wear 267 (2009) 1482–1489.
DOI: 10.1016/j.wear.2009.03.022
Google Scholar
[14]
Peter W.Lee et al, powder metallurgy technologies and applications, ASM Metals handbook Vol.7 (1984).
Google Scholar
[15]
G.S. Upadhyaya, powder metallurgy technology, India, (2002).
Google Scholar
[16]
F.Thummler and R.Oberacker, an introduction to powder metallurgy, London, (1993).
Google Scholar
[17]
Martin A. Kearns et al, Sintering and properties of MIM M2 high speed steel produced by prealloy and master alloy routes, Metal Powder Report Vol.71 No.3 (2016) 200-206.
DOI: 10.1016/j.mprp.2016.04.085
Google Scholar
[18]
Biljana D. Stojanovic, advanced science and technology of sintering, New York, (1999).
Google Scholar
[19]
E.P.R. Lima et al, effect of different tempering stages and temperatures on microstructure, tenacity and hardness of vacuum sintered HSS AISI T15, materials science forum Vol.591-593 (2008) 68-73.
DOI: 10.4028/www.scientific.net/msf.591-593.68
Google Scholar
[20]
R.A. Nogueira et al, Effect of heat treatment on microstructure of commercial and vacuum sintered high speed steels AISI M2 and T15, materials science forum Vol.498-499 (2005) 186-191.
DOI: 10.4028/www.scientific.net/msf.498-499.186
Google Scholar