Fracture Toughness of Random Short Natural Fibers Polyester Composites

Article Preview

Abstract:

The aim of this paper is to describe the fracture behavior of composites reinforced with two layers of Alfa random. An alkaline treatment at 1, 5 and 10% for a period of 24 hours with NaOH solution was performed to improve the mechanical properties of Alfa fibers. The morphological and structural changes that occurred in fiber after treatment; and the effects of this treatment on the mechanical properties of composites were discussed and were supported by Scanning Electron Microscopy. Many aspects of studies reported in this paper are original, such as the strain energy release rate and intensity factor evaluation of Alfa composites.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 18)

Pages:

94-105

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis. L. Carbohydrate Polymers.

DOI: 10.1016/j.carbpol.2018.01.072

Google Scholar

[2] Sanjay, M., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172, 566-581.

DOI: 10.1016/j.jclepro.2017.10.101

Google Scholar

[3] Rokbi, M., H. Osmani, A. Imad, and N. Benseddiq. 2011. Effect of Chemical treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite. Procedia Engineering 10, 2092-(2097).

DOI: 10.1016/j.proeng.2011.04.346

Google Scholar

[4] Kalia, S., B. Kaith, and I. Kaur. 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science 49, 1253-1272.

DOI: 10.1002/pen.21328

Google Scholar

[5] Yousif, B., A. Shalwan, C. Chin, and K. Ming. 2012. Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design 40, 378-385.

DOI: 10.1016/j.matdes.2012.04.017

Google Scholar

[6] Rodriguez, E. S., P. M. Stefani, and A. Vazquez. 2007. Effects of fibers' alkali treatment on the resin transfer molding processing and mechanical properties of Jute—Vinylester composites. Journal of Composite Materials 41, 1729-1741.

DOI: 10.1177/0021998306069889

Google Scholar

[7] Towo, A. N., and M. P. Ansell. 2008. Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre–thermosetting resin composites. Composites Science and Technology 68, 925-932.

DOI: 10.1016/j.compscitech.2007.08.022

Google Scholar

[8] Taha, I., L. Steuernagel, and G. Ziegmann. 2007. Optimization of the alkali treatment process of date palm fibres for polymeric composites. Composite Interfaces 14, 669-684.

DOI: 10.1163/156855407782106528

Google Scholar

[9] Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134, 429-437.

DOI: 10.1016/j.carbpol.2015.08.024

Google Scholar

[10] Belkhir, S., A. Koubaa, A. Khadhri, M. Ksontini, H. Nadji, S. Smiti, and T. Stevanovic. 2013. Seasonal effect on the chemical composition of the leaves of Stipa tenacissima L. and implications for pulp properties. Industrial Crops and Products 44, 56-61.

DOI: 10.1016/j.indcrop.2012.09.023

Google Scholar

[11] Bouiri, B., and M. Amrani. 2010. Elemental chlorine-free bleaching halfa pulp. Journal of Industrial and Engineering Chemistry 16, 587-592.

DOI: 10.1016/j.jiec.2010.03.015

Google Scholar

[12] Hattalli, S., A. Benaboura, F. Ham-Pichavant, A. Nourmamode, and A. Castellan. 2002. Adding value to Alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins 1. Lignin characterization. Polymer Degradation and Stability 76, 259-264.

DOI: 10.1016/s0141-3910(02)00022-8

Google Scholar

[13] Nadji, A., M.-C. Brochier-Salon, C. Bruzzèse, and M. N. Belgacem. 2006. Chemical composition and pulp properties of Alfa tenassissima. Cellulose Chemistry and Technology 40, 45-52.

Google Scholar

[14] Paiva, M., I. Ammar, A. Campos, R. B. Cheikh, and A. Cunha. 2007. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology 67, 1132-1138.

DOI: 10.1016/j.compscitech.2006.05.019

Google Scholar

[15] Hamza, S., H. Saad, B. Charrier, N. Ayed, and F. Charrier-El Bouhtoury. 2013. Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products 49, 357-365.

DOI: 10.1016/j.indcrop.2013.04.052

Google Scholar

[16] Bessadok, A., S. Roudesli, S. Marais, N. Follain, and L. Lebrun. 2009. Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing 40, 184-195.

DOI: 10.1016/j.compositesa.2008.10.018

Google Scholar

[17] Bessadok, A., S. Marais, F. Gouanvé, L. Colasse, I. Zimmerlin, S. Roudesli, and M. Métayer. 2007. Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Composites Science and Technology 67, 685-697.

DOI: 10.1016/j.compscitech.2006.04.013

Google Scholar

[18] Ghali, L., M. Zidi, and S. Roudesli. 2006. Physical and mechanical characterization of technical esparto (alfa) fibres. Journal of applied sciences 6, 2450-2455.

DOI: 10.3923/jas.2006.2450.2455

Google Scholar

[19] Brahim, S. B., and R. B. Cheikh. 2007. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Composites Science and Technology 67, 140-147.

DOI: 10.1016/j.compscitech.2005.10.006

Google Scholar

[20] Chikouche, M. D. L., A. Merrouche, A. Azizi, M. Rokbi, and S. Walter. 2015. Influence of alkali treatment on the mechanical properties of new cane fibre/polyester composites. Journal of Reinforced Plastics and Composites 34, 1329-1339.

DOI: 10.1177/0731684415591093

Google Scholar

[21] Rokbi, M., Z. E. A. Rahmouni, and B. Baali. 2017. In: Advances in Concrete Construction. Vol. 5, pp.331-343.

Google Scholar

[22] Jayaramudu, J., K. O. Reddy, C. U. Maheswari, D. J. P. Reddy, and A. V. Rajulu. 2009. Tensile properties and thermal degradation parameters of Polyalthia cerasoides natural fabric reinforcement. Journal of Reinforced Plastics and Composites 28, 2177-2181.

DOI: 10.1177/0731684408092066

Google Scholar

[23] Gassan, J., and A. K. Bledzki. 1999. Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science 71, 623-629.

DOI: 10.1002/(sici)1097-4628(19990124)71:4<623::aid-app14>3.0.co;2-k

Google Scholar

[24] Lopattananon, N., K. Panawarangkul, K. Sahakaro, and B. Ellis. 2006. Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. Journal of Applied Polymer Science 102, 1974-(1984).

DOI: 10.1002/app.24584

Google Scholar

[25] Mahmoudi, N., and N. Hebbar. 2014. Study of mechanical properties of a composite-based plant fibre of the palm and thermoplastic matrices (PP). Journal of Composite Materials 48, 291-299.

DOI: 10.1177/0021998312470577

Google Scholar

[26] Paul, S. A., A. Boudenne, L. Ibos, Y. Candau, K. Joseph, and S. Thomas. 2008. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites Part A: Applied Science and Manufacturing 39, 1582-1588.

DOI: 10.1016/j.compositesa.2008.06.004

Google Scholar

[27] Hepworth, D., J. Vincent, G. Jeronimidis, and D. Bruce. 2000. The penetration of epoxy resin into plant fibre cell walls increases the stiffness of plant fibre composites. Composites Part A: Applied Science and Manufacturing 31, 599-601.

DOI: 10.1016/s1359-835x(99)00097-4

Google Scholar

[28] Silva, R., D. Spinelli, W. Bose Filho, S. C. Neto, G. Chierice, and J. Tarpani. 2006. Fracture toughness of natural fibers/castor oil polyurethane composites. Composites Science and Technology 66, 1328-1335.

DOI: 10.1016/j.compscitech.2005.10.012

Google Scholar

[29] Li, Y., Y.-W. Mai, and L. Ye. 2005. Effects of fibre surface treatment on fracture-mechanical properties of sisal-fibre composites. Composite Interfaces 12, 141-163.

DOI: 10.1163/1568554053542151

Google Scholar

[30] Hughes, M., C. Hill, and J. Hague. 2002. The fracture toughness of bast fibre reinforced polyester composites Part 1 Evaluation and analysis. Journal of Materials Science 37, 4669-4676.

Google Scholar

[31] Wong, K., S. Zahi, K. Low, and C. Lim. 2010. Fracture characterisation of short bamboo fibre reinforced polyester composites. Materials & Design 31, 4147-4154.

DOI: 10.1016/j.matdes.2010.04.029

Google Scholar

[32] Joffe, R., L. Wallström, and L. Berglund. 2001. In: International scientific colloquium: modelling for saving resources. Riga.

Google Scholar

[33] Khan, Z., B. Yousif, and M. Islam. 2017. Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B: Engineering 116, 186-199.

DOI: 10.1016/j.compositesb.2017.02.015

Google Scholar

[34] Alvarez, V. A., R. A. Ruscekaite, and A. Vazquez. 2003. Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. Journal of Composite Materials 37, 1575-1588.

DOI: 10.1177/0021998303035180

Google Scholar

[35] Lados, D. A., and D. Apelian. 2008. Relationships between microstructure and fatigue crack propagation paths in Al–Si–Mg cast alloys. Engineering Fracture Mechanics 75, 821-832.

DOI: 10.1016/j.engfracmech.2007.01.027

Google Scholar

[36] Cotterell, B. 1970. On fracture path stability in the compact tension test. International Journal of Fracture Mechanics 6, 189-192.

DOI: 10.1007/bf00189826

Google Scholar

[37] Rokbi, M., H. Osmani, N. Benseddiq, and A. Imad. 2011. On experimental investigation of failure process of woven-fabric composites. Composites Science and Technology 71, 1375-1384.

DOI: 10.1016/j.compscitech.2011.05.003

Google Scholar

[38] Karger-Kocsis, J., T. Harmia, and T. Czigany. 1995. Comparison of the fracture and failure behavior of polypropylene composites reinforced by long glass fibers and by glass mats. Composites Science and Technology 54, 287-298.

DOI: 10.1016/0266-3538(95)00068-2

Google Scholar