[1]
Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis. L. Carbohydrate Polymers.
DOI: 10.1016/j.carbpol.2018.01.072
Google Scholar
[2]
Sanjay, M., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172, 566-581.
DOI: 10.1016/j.jclepro.2017.10.101
Google Scholar
[3]
Rokbi, M., H. Osmani, A. Imad, and N. Benseddiq. 2011. Effect of Chemical treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite. Procedia Engineering 10, 2092-(2097).
DOI: 10.1016/j.proeng.2011.04.346
Google Scholar
[4]
Kalia, S., B. Kaith, and I. Kaur. 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science 49, 1253-1272.
DOI: 10.1002/pen.21328
Google Scholar
[5]
Yousif, B., A. Shalwan, C. Chin, and K. Ming. 2012. Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design 40, 378-385.
DOI: 10.1016/j.matdes.2012.04.017
Google Scholar
[6]
Rodriguez, E. S., P. M. Stefani, and A. Vazquez. 2007. Effects of fibers' alkali treatment on the resin transfer molding processing and mechanical properties of Jute—Vinylester composites. Journal of Composite Materials 41, 1729-1741.
DOI: 10.1177/0021998306069889
Google Scholar
[7]
Towo, A. N., and M. P. Ansell. 2008. Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre–thermosetting resin composites. Composites Science and Technology 68, 925-932.
DOI: 10.1016/j.compscitech.2007.08.022
Google Scholar
[8]
Taha, I., L. Steuernagel, and G. Ziegmann. 2007. Optimization of the alkali treatment process of date palm fibres for polymeric composites. Composite Interfaces 14, 669-684.
DOI: 10.1163/156855407782106528
Google Scholar
[9]
Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134, 429-437.
DOI: 10.1016/j.carbpol.2015.08.024
Google Scholar
[10]
Belkhir, S., A. Koubaa, A. Khadhri, M. Ksontini, H. Nadji, S. Smiti, and T. Stevanovic. 2013. Seasonal effect on the chemical composition of the leaves of Stipa tenacissima L. and implications for pulp properties. Industrial Crops and Products 44, 56-61.
DOI: 10.1016/j.indcrop.2012.09.023
Google Scholar
[11]
Bouiri, B., and M. Amrani. 2010. Elemental chlorine-free bleaching halfa pulp. Journal of Industrial and Engineering Chemistry 16, 587-592.
DOI: 10.1016/j.jiec.2010.03.015
Google Scholar
[12]
Hattalli, S., A. Benaboura, F. Ham-Pichavant, A. Nourmamode, and A. Castellan. 2002. Adding value to Alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins 1. Lignin characterization. Polymer Degradation and Stability 76, 259-264.
DOI: 10.1016/s0141-3910(02)00022-8
Google Scholar
[13]
Nadji, A., M.-C. Brochier-Salon, C. Bruzzèse, and M. N. Belgacem. 2006. Chemical composition and pulp properties of Alfa tenassissima. Cellulose Chemistry and Technology 40, 45-52.
Google Scholar
[14]
Paiva, M., I. Ammar, A. Campos, R. B. Cheikh, and A. Cunha. 2007. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology 67, 1132-1138.
DOI: 10.1016/j.compscitech.2006.05.019
Google Scholar
[15]
Hamza, S., H. Saad, B. Charrier, N. Ayed, and F. Charrier-El Bouhtoury. 2013. Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products 49, 357-365.
DOI: 10.1016/j.indcrop.2013.04.052
Google Scholar
[16]
Bessadok, A., S. Roudesli, S. Marais, N. Follain, and L. Lebrun. 2009. Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing 40, 184-195.
DOI: 10.1016/j.compositesa.2008.10.018
Google Scholar
[17]
Bessadok, A., S. Marais, F. Gouanvé, L. Colasse, I. Zimmerlin, S. Roudesli, and M. Métayer. 2007. Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Composites Science and Technology 67, 685-697.
DOI: 10.1016/j.compscitech.2006.04.013
Google Scholar
[18]
Ghali, L., M. Zidi, and S. Roudesli. 2006. Physical and mechanical characterization of technical esparto (alfa) fibres. Journal of applied sciences 6, 2450-2455.
DOI: 10.3923/jas.2006.2450.2455
Google Scholar
[19]
Brahim, S. B., and R. B. Cheikh. 2007. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Composites Science and Technology 67, 140-147.
DOI: 10.1016/j.compscitech.2005.10.006
Google Scholar
[20]
Chikouche, M. D. L., A. Merrouche, A. Azizi, M. Rokbi, and S. Walter. 2015. Influence of alkali treatment on the mechanical properties of new cane fibre/polyester composites. Journal of Reinforced Plastics and Composites 34, 1329-1339.
DOI: 10.1177/0731684415591093
Google Scholar
[21]
Rokbi, M., Z. E. A. Rahmouni, and B. Baali. 2017. In: Advances in Concrete Construction. Vol. 5, pp.331-343.
Google Scholar
[22]
Jayaramudu, J., K. O. Reddy, C. U. Maheswari, D. J. P. Reddy, and A. V. Rajulu. 2009. Tensile properties and thermal degradation parameters of Polyalthia cerasoides natural fabric reinforcement. Journal of Reinforced Plastics and Composites 28, 2177-2181.
DOI: 10.1177/0731684408092066
Google Scholar
[23]
Gassan, J., and A. K. Bledzki. 1999. Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science 71, 623-629.
DOI: 10.1002/(sici)1097-4628(19990124)71:4<623::aid-app14>3.0.co;2-k
Google Scholar
[24]
Lopattananon, N., K. Panawarangkul, K. Sahakaro, and B. Ellis. 2006. Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. Journal of Applied Polymer Science 102, 1974-(1984).
DOI: 10.1002/app.24584
Google Scholar
[25]
Mahmoudi, N., and N. Hebbar. 2014. Study of mechanical properties of a composite-based plant fibre of the palm and thermoplastic matrices (PP). Journal of Composite Materials 48, 291-299.
DOI: 10.1177/0021998312470577
Google Scholar
[26]
Paul, S. A., A. Boudenne, L. Ibos, Y. Candau, K. Joseph, and S. Thomas. 2008. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites Part A: Applied Science and Manufacturing 39, 1582-1588.
DOI: 10.1016/j.compositesa.2008.06.004
Google Scholar
[27]
Hepworth, D., J. Vincent, G. Jeronimidis, and D. Bruce. 2000. The penetration of epoxy resin into plant fibre cell walls increases the stiffness of plant fibre composites. Composites Part A: Applied Science and Manufacturing 31, 599-601.
DOI: 10.1016/s1359-835x(99)00097-4
Google Scholar
[28]
Silva, R., D. Spinelli, W. Bose Filho, S. C. Neto, G. Chierice, and J. Tarpani. 2006. Fracture toughness of natural fibers/castor oil polyurethane composites. Composites Science and Technology 66, 1328-1335.
DOI: 10.1016/j.compscitech.2005.10.012
Google Scholar
[29]
Li, Y., Y.-W. Mai, and L. Ye. 2005. Effects of fibre surface treatment on fracture-mechanical properties of sisal-fibre composites. Composite Interfaces 12, 141-163.
DOI: 10.1163/1568554053542151
Google Scholar
[30]
Hughes, M., C. Hill, and J. Hague. 2002. The fracture toughness of bast fibre reinforced polyester composites Part 1 Evaluation and analysis. Journal of Materials Science 37, 4669-4676.
Google Scholar
[31]
Wong, K., S. Zahi, K. Low, and C. Lim. 2010. Fracture characterisation of short bamboo fibre reinforced polyester composites. Materials & Design 31, 4147-4154.
DOI: 10.1016/j.matdes.2010.04.029
Google Scholar
[32]
Joffe, R., L. Wallström, and L. Berglund. 2001. In: International scientific colloquium: modelling for saving resources. Riga.
Google Scholar
[33]
Khan, Z., B. Yousif, and M. Islam. 2017. Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B: Engineering 116, 186-199.
DOI: 10.1016/j.compositesb.2017.02.015
Google Scholar
[34]
Alvarez, V. A., R. A. Ruscekaite, and A. Vazquez. 2003. Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. Journal of Composite Materials 37, 1575-1588.
DOI: 10.1177/0021998303035180
Google Scholar
[35]
Lados, D. A., and D. Apelian. 2008. Relationships between microstructure and fatigue crack propagation paths in Al–Si–Mg cast alloys. Engineering Fracture Mechanics 75, 821-832.
DOI: 10.1016/j.engfracmech.2007.01.027
Google Scholar
[36]
Cotterell, B. 1970. On fracture path stability in the compact tension test. International Journal of Fracture Mechanics 6, 189-192.
DOI: 10.1007/bf00189826
Google Scholar
[37]
Rokbi, M., H. Osmani, N. Benseddiq, and A. Imad. 2011. On experimental investigation of failure process of woven-fabric composites. Composites Science and Technology 71, 1375-1384.
DOI: 10.1016/j.compscitech.2011.05.003
Google Scholar
[38]
Karger-Kocsis, J., T. Harmia, and T. Czigany. 1995. Comparison of the fracture and failure behavior of polypropylene composites reinforced by long glass fibers and by glass mats. Composites Science and Technology 54, 287-298.
DOI: 10.1016/0266-3538(95)00068-2
Google Scholar