Elimination of Chromium (VI) by Adsorption onto Natural and/or Modified Kaolinite

Article Preview

Abstract:

The purpose of this study is to compare the effectiveness of a natural and / or modified kaolinite to adsorb chromium-containing aqueous effluents in its most toxic form (the hexavalent chromate ion (Cr (VI)). Adsorbant used in the present study is a kaolinite of hydrothermal origin. The modified kaolinite has been prepared by insertion of a cationic surfactant DTAC in interlayer space of this clay. The modification method is generally performed by the cation exchange reaction in the liquid state. The specific surface areas determined by nitrogen adsorption at 77 K for the two samples of kaolinite (natural and modified) are succinctly 48.75 and 63.72 m2/g. Scanning electron microscopy has shown that the used clay is in tubular form. The treatment of natural kaolin by the intercalation of cationic surfactant increased its specific surface of about 18 %. Therefore its power sorptif increased which was found by a comparative study of adsorption of Cr (VI) on natural kaolin and / or modified.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 18)

Pages:

106-112

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Hsanullah, F.A. Al-Khaldi, Basel A. Sharkh, A. M. Abulkibash, T. Laoui. Effect of acid modification on adsorption of hexavalent chromium (Cr (VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 57 (2016).

DOI: 10.1080/19443994.2015.1021847

Google Scholar

[2] M. H. Dehghani, D. Sanaei, I. Ali. A. Bhatnagar. Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. Journal of Molecular Liquids, 215 (2016) 671-679.

DOI: 10.1016/j.molliq.2015.12.057

Google Scholar

[3] T. A. Khan, M. Nazir, I. Ali, A. Kumar. Removal of Chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arabian Journal of Chemistry, 10 (2017) S2388-S2398.

DOI: 10.1016/j.arabjc.2013.08.019

Google Scholar

[4] Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng. Two-Dimensional Titanium Carbide for Efficiently Reductive Removal of Highly Toxic Chromium (VI) from Water. Applied Materials and Interfaces, 7 (3) (2016) 1795–1803.

DOI: 10.1021/am5074722

Google Scholar

[5] Y. Nakano, M. Tanaka, Y. Nakamira, M. Konno. Removal and recovery system hexavalent chromium from waste water by tannin gel particles. Journal of Chemical Engineering, 33 (2000) 747-752.

DOI: 10.1252/jcej.33.747

Google Scholar

[6] M. I. Qureshi, F. Patel, N. Al-Baghli, B. Abussaud, B. S. Tawabini, T. Laoui. A Comparative Study of Raw and Metal Oxide Impregnated Carbon Nanotubes for the Adsorption of Hexavalent Chromium from Aqueous Solution. Bioinorganic Chemistry and Applications, 2017 (2017).

DOI: 10.1155/2017/1624243

Google Scholar

[7] M. Kashifuddin. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308 (2017) 438-462.

DOI: 10.1016/j.cej.2016.09.029

Google Scholar

[8] H. Daraei, A. Mittal, M. Noorisepehr, J. Mittal. Separation of chromium from water samples using eggshell powder as a low-cost sorbent: kinetic and thermodynamic studies. Destination and Water Treatment, 53 (2015) 214-220.

DOI: 10.1080/19443994.2013.837011

Google Scholar

[9] L. Pasti, E. Rodeghero, G. Beltrami, M. Ardit, E. Sarti, T. Chenet, C. Stevanin, A. Martucci. Insights into Adsorption of Chlorobenzene in High Silica MFI and FAU Zeolites Gained from Chromatographic and Diffractometric Techniques. Minerals, 8 (3) (2018) 80.

DOI: 10.3390/min8030080

Google Scholar

[10] B. Xue, H. Guo, L. Liu, M. Chen. Preparation, characterization and catalytic properties of yttrium-zirconium-pillared montmorillonite and their application in supported catalysts. Clay Minerals. 50 (3) (2015) 211-219.

DOI: 10.1180/claymin.2015.050.2.05

Google Scholar

[11] Y. Chen, D. An, S. Sun, J. Gao, L. Qian. Reduction and removal of chromium VI in water by powdered activated carbon. Materials, 11 (2018) 269.

DOI: 10.3390/ma11020269

Google Scholar

[12] S. Deng, Y. Nie, Z. Du, Q. Huang, P. Meng, B. Wang, J. Huang, G. Yu. Enhanced, Adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. Journal of Hazardous Materials, 282 (2015) 150-157.

DOI: 10.1016/j.jhazmat.2014.03.045

Google Scholar

[13] M. Fellah, L. Aissani, N. Corinne, M. Abdul Samed and A. Montagne, Transaction of Institute of Metal Finishing, 95 (05) (2017) 261–268.

Google Scholar

[14] M. Fellah, M. Abdul Samad, M. Labaïz , O. Assala, Sliding friction and wear performance of the nano-bioceramic α-Al2O3 prepared by high energy milling, Tribology International, 91 (2015) 151-159.

DOI: 10.1016/j.triboint.2015.07.006

Google Scholar

[15] M. Fellah, A. Linda, M. Abdul Samed, A. Montagne. Effect of replacing vanadium by nobium and iron on the tribological behavior of HIPed titanium alloys. Acta Metallurgica Scinica (English letter), 30 (11) (2017).1089-1099.

DOI: 10.1007/s40195-017-0652-x

Google Scholar

[16] B. Szala, T. Bajda A. Jeleń. Removal of chromium (VI) from aqueous solutions using zeolites modified with HDTMA and ODTMA surfactants. Clay Minerals, 50 (1) (2015) 103-115.

DOI: 10.1180/claymin.2015.050.1.10

Google Scholar

[17] M. Fellah, L. Aissani, M. Abdul Samad, D. Leila, C. Nouveau, H. Djebaili, A. Montagneg, and A. Iost: Transaction of Institute of Metal Finishing, 96 (2) (2018) 79-85.

DOI: 10.1080/00202967.2018.1424403

Google Scholar

[18] O. Khireddine, Y. Berredjem, F.Hailaimia, S. Nouacer, R. Djellaibi, N. Bensid, A. Boulmokh. Removal of Para-Nitrophenol by Adsorption on Intercalated Natural Clay. Sensor Letters, 14 (3) (2016) 258-265.

DOI: 10.1166/sl.2016.3647

Google Scholar

[19] Y. Hu, N. M. Fitzgerald, G. Lv, X. Xing, W. T. Jiang, and Z. Li. Adsorption of Atenolol on Kaolinite. Advances in Materials Science and Engineering, 2015 (2015) 8 pages.

DOI: 10.1155/2015/897870

Google Scholar

[20] S. M. A. Hamdy. Adsorption of Water Heavy Metals onto Natural Clay Environmental Science. Indian Journal of Applied Research, 5 (1) (2015) 200-202.

Google Scholar

[21] R. Sharma, D. Sharma. Use of variamine blue dye in spectrophotometric determination of water soluble Cr (VI) in portland cement. Oriental Journal of Chemistry, 31 (2015) 2231-2237.

DOI: 10.13005/ojc/310448

Google Scholar

[22] P. Maziarz, A. Prokop, J. Matusik. A comparative study on the removal of Pb (II), Zn (II), Cd (II) and As (V) by natural, acid activated and calcinated halloysite. Geology, Geophysics and Environment, 41 (1) (2015) 108–109.

DOI: 10.7494/geol.2015.41.1.108

Google Scholar

[23] G. A. Kovo, A. D. Folasegun. Acid-modified montmorillonite for sorption of heavy metals from automobile effluent. Journal of Basic and Applied Sciences 5 (1) (2016) 1-12.

Google Scholar

[24] A. Ihsanullah, A. Amir, M. Al-Amer, T. Laoui, M. Almarri, M. Nasser, M. Khraisheh, M. A. Atieh. Heavy metal removal from aqueous solution by advanced carbon Nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 157 (2016).

DOI: 10.1016/j.seppur.2015.11.039

Google Scholar

[25] B. Szala, T. Bajda, A. Jelen. Removal of chromium (VI) from aqueous solutions using zeolites modified with HDTMA and ODTMA surfactants. Clay Minerals, 50 (2015) 103–115.

DOI: 10.1180/claymin.2015.050.1.10

Google Scholar