Investigation of Interdiffusion in High Entropy Alloys: Application of the Random Alloy Model

Article Preview

Abstract:

High entropy alloys (HEAs) are composed of five or more principal elements with equal (or nearly equal) compositions. In this paper, interdiffusion phenomenon in the HEAs is investigated. Two composition dependent (as well as composition independent) interdiffusion matrices have been used for detailed studying of the diffusion behaviour in CoCrFeMnNi HEAs. These matrices are calculated according to the Darken and Manning formalisms and are used in combination with the explicit finite difference method (EFDM) to obtain interdiffusion profiles. First, the interdiffusion profiles are calculated for the case of the terminal binary diffusion couple. A significant difference in the composition profiles is found between predictions according to the Darken and Manning formalisms. Next, the interdiffusion problem in the 5-component alloy is addressed numerically by considering the interdiffusion coefficients as constant, independent of composition, in CoCrFeMnNi alloys for several diffusion couples (mainly quasi-binary and quasi-ternary). The simulated composition profiles are found to be in a very good agreement with the available experimental results [1, 2]. It should be pointed out that the independence on composition of the interdiffusion matrix should be used for diffusion couples under two conditions: relatively small changes in composition, and the non-zero/non-dilute terminal compositions. The composition dependent interdiffusion matrix should be used in the diffusion couple if the composition differences are large and/or zero/dilute terminal compositions. In this paper, the Darken and Manning formalisms are used for modelling the composition dependent interdiffusion matrices. The purpose of this modelling is to systematically investigate interdiffusion in CoCrFeMnNi alloys in diffusion couples with substantial changes in composition. The main application of the present research is in the prediction of possible interdiffusion profiles in the framework of the random alloy model.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 22)

Pages:

94-108

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia, vol. 61, no. 13, pp.4887-4897, (2013).

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar

[2] J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, and J.-W. Yeh, Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: experimental studies and numerical simulations, Journal of Alloys and Compounds, vol. 674, pp.455-462, (2016).

DOI: 10.1016/j.jallcom.2016.03.046

Google Scholar

[3] W.-H. Wu, C.-C. Yang, and L. Yeh, Industrial development of high-entropy alloys, in Annales De Chimie-Science Des Materiaux, 2006, vol. 31, no. 6, p.737: Paris; New York: Masson, (1978).

DOI: 10.3166/acsm.31.737-747

Google Scholar

[4] S. Chikumba and V. V. Rao, High Entropy Alloys: Development and Applications, in 7th Int. Conf. Latest Trends Eng. Technol, pp.1-5, (2015).

Google Scholar

[5] K.-H. Huang and J. Yeh, A study on the multicomponent alloy systems containing equal-mole elements, Hsinchu: National Tsing Hua University, (1996).

Google Scholar

[6] Y. Zhang, T. T. Zuo, Zhi Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science, vol. 61, pp.1-93, (2014).

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[7] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, vol. 6, no. 5, pp.299-303, (2004).

DOI: 10.1002/adem.200300567

Google Scholar

[8] B. Cantor, I. Chang, P. Knight, and A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, vol. 375, pp.213-218, (2004).

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[9] D. B. Miracle, J. D. Miller, O. N. Senkov, C. Woodward, M. D. Uchic, and J. Tiley, Exploration and development of high entropy alloys for structural applications, Entropy, vol. 16, no. 1, pp.494-525, (2014).

DOI: 10.3390/e16010494

Google Scholar

[10] M.-H. Tsai and J.-W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, vol. 2, no. 3, pp.107-123, (2014).

Google Scholar

[11] Z. Lu, H. Wang, M. W. Chen, I. Baker, J. W. Yeh, C. T. Liu and T. G. Nieh, An assessment on the future development of high-entropy alloys: summary from a recent workshop, Intermetallics, vol. 66, pp.67-76, (2015).

DOI: 10.1016/j.intermet.2015.06.021

Google Scholar

[12] S. J. Mary, N. Rajan, and R. Epshiba, High entropy alloys properties and its applications–An over view, European Chemical Bulletin, vol. 4, no. 4-6, pp.279-284, (2015).

Google Scholar

[13] C. Tong, M. Chen, S. Chen, J. Yeh, T. Shun, S. Lin and S. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements metal, Mater Trans A, vol. 36, pp.881-893, (2005).

DOI: 10.1007/s11661-005-0283-0

Google Scholar

[14] Y. Zhou, Y. Zhang, Y. Wang, and G. Chen, Solid solution alloys of Al Co Cr Fe Ni Ti x with excellent room-temperature mechanical properties, Applied physics letters, vol. 90, no. 18, p.181904, (2007).

DOI: 10.1063/1.2734517

Google Scholar

[15] C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, and S.-K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0. 5Ni high-entropy alloys, Materials Science and Engineering: A, vol. 528, no. 10-11, pp.3581-3588, (2011).

DOI: 10.1016/j.msea.2011.01.072

Google Scholar

[16] M.-H. Tsai, C.-W. Wang, C.-W. Tsai, W.-J. Shen, J.-W. Yeh, J.-Y. Gan and W.-W. Wu, Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization, Journal of the Electrochemical Society, vol. 158, no. 11, pp. H1161-H1165, (2011).

DOI: 10.1149/2.056111jes

Google Scholar

[17] Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corrosion Science, vol. 52, no. 3, pp.1026-1034, (2010).

DOI: 10.1016/j.corsci.2009.11.028

Google Scholar

[18] D. Miracle and O. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, vol. 122, pp.448-511, (2017).

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[19] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat, vol. 31, no. 6, pp.633-648, (2006).

DOI: 10.3166/acsm.31.633-648

Google Scholar

[20] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom, vol. 65, no. 12, pp.1759-1771, (2013).

DOI: 10.1007/s11837-013-0761-6

Google Scholar

[21] S. V. Divinski, A. Pokoev, N. Esakkiraja, and A. Paul, A mystery of sluggish diffusion" in high-entropy alloys: the truth or a myth,, arXiv preprint arXiv:1804.03465, (2018).

DOI: 10.4028/www.scientific.net/df.17.69

Google Scholar

[22] M. Vaidya, S. Trubel, B. Murty, G. Wilde, and S. V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Journal of Alloys and Compounds, vol. 688, pp.994-1001, (2016).

DOI: 10.1016/j.jallcom.2016.07.239

Google Scholar

[23] M. Vaidya, K. Pradeep, B. Murty, G. Wilde, and S. Divinski, Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys, Scientific reports, vol. 7, no. 1, p.12293, (2017).

DOI: 10.1038/s41598-017-12551-9

Google Scholar

[24] M. Vaidya, K. Pradeep, B. Murty, G. Wilde, and S. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Materialia, vol. 146, pp.211-224, (2018).

DOI: 10.1016/j.actamat.2017.12.052

Google Scholar

[25] D. Gaertner, J. Kottke, G. Wilde, S. V. Divinski, and Y. Chumlyakov, Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys, Journal of Materials Research, pp.1-8, (2018).

DOI: 10.1557/jmr.2018.162

Google Scholar

[26] W. Kucza, J. Dąbrowa, G. Cieślak, K. Berent, T. Kulik, and M. Danielewski, Studies of sluggish diffusion, effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach, Journal of Alloys and Compounds, vol. 731, pp.920-928, (2018).

DOI: 10.1016/j.jallcom.2017.10.108

Google Scholar

[27] Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, and Z.-K. Liu, On Sluggish Diffusion in Fcc Al–Co–Cr–Fe–Ni High-Entropy Alloys: An Experimental and Numerical Study, Metals, vol. 8, no. 1, p.16, (2017).

DOI: 10.3390/met8010016

Google Scholar

[28] K. Jin, C. Zhang, F. Zhang, and H. Bei, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys, Materials Research Letters, vol. 6, no. 5, pp.293-299, (2018).

DOI: 10.1080/21663831.2018.1446466

Google Scholar

[29] D. Beke and G. Erdélyi, On the diffusion in high-entropy alloys, Materials Letters, vol. 164, pp.111-113, (2016).

DOI: 10.1016/j.matlet.2015.09.028

Google Scholar

[30] C. Zhang, F. Zhang, K. Jin, H. Bei, S. Chen, W. Cao, J. Zhu and D. Lv, Understanding of the Elemental Diffusion Behavior in Concentrated Solid Solution Alloys, Journal of Phase Equilibria and Diffusion, vol. 38, no. 4, pp.434-444, (2017).

DOI: 10.1007/s11669-017-0580-5

Google Scholar

[31] K. Kulkarni and G. P. S. Chauhan, Investigations of quaternary interdiffusion in a constituent system of high entropy alloys, AIP Advances, vol. 5, no. 9, p.097162, (2015).

DOI: 10.1063/1.4931806

Google Scholar

[32] B. Cantor, Multicomponent and high entropy alloys, Entropy, vol. 16, no. 9, pp.4749-4768, (2014).

DOI: 10.3390/e16094749

Google Scholar

[33] C.-C. Tung, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Materials letters, vol. 61, no. 1, pp.1-5, (2007).

DOI: 10.1016/j.matlet.2006.03.140

Google Scholar

[34] Z. Zheng, X. Li, C. Zhang, and J. Li, Microstructure and corrosion behaviour of FeCoNiCuSnx high entropy alloys, Materials Science and Technology, vol. 31, no. 10, pp.1148-1152, (2015).

DOI: 10.1179/1743284714y.0000000730

Google Scholar

[35] T.R. Paul, I.V. Belova, and G.E. Murch, Random alloy diffusion kinetics for the application to multicomponent alloy systems, Philosophical Magazine, vol. 96, no. 12, pp.1228-1244, (2016).

DOI: 10.1080/14786435.2016.1159349

Google Scholar

[36] A.R. Allnatt, T.R. Paul, I.V. Belova, and G. E. Murch, A high accuracy diffusion kinetics formalism for random multicomponent alloys: application to high entropy alloys, Philosophical Magazine, vol. 96, no. 28, pp.2969-2985, (2016).

DOI: 10.1080/14786435.2016.1219785

Google Scholar

[37] T. R. Paul, I. V. Belova, and G. E. Murch, Analysis of diffusion in high entropy alloys, Materials Chemistry and Physics, (2017).

Google Scholar

[38] I.V. Belova and G.E. Murch, Test of the validity of the Darken/Manning relation for diffusion in ordered alloys taking the L12 structure, Philosophical Magazine A, vol. 78, no. 5, pp.1085-1092, (1998).

DOI: 10.1080/01418619808239976

Google Scholar

[39] G. E. Murch and Z. Qin, Tracer and collective correlation factors in solid state diffusion, in Defect and Diffusion Forum, 1994, vol. 109, pp.1-18: Trans Tech Publ.

DOI: 10.4028/www.scientific.net/ddf.109-110.1

Google Scholar

[40] J. R. Manning, Correlation factors for diffusion in nondilute alloys, Physical Review B, vol. 4, no. 4, p.1111, (1971).

Google Scholar

[41] J. R. Manning, Diffusion kinetics for atoms in crystals, American Journal of Physics, vol. 36, no. 10, pp.922-923, (1968).

Google Scholar

[42] L. Moleko, A.R. Allnatt, and E.L. Allnatt, A self-consistent theory of matter transport in a random lattice gas and some simulation results, Philosophical Magazine A, vol. 59, no. 1, pp.141-160, (1989).

DOI: 10.1080/01418618908220335

Google Scholar