Ion Transport in Glass-Forming Calcium Potassium Nitrate: From Complex Behaviours to Unexpected Simplicities

Article Preview

Abstract:

Re-examination of published conductivity spectra for 2Ca (NO3)2∙3KNO3 (CKN) in its molten and glassy states, in terms of the MIGRATION concept, has brought to light new links between elementary processes occurring within one picosecond and their successful outcomes, i.e. those which determine the DC conductivities. The starting point of this analysis is the transition at 378 K, which arises from a change from a decoupled to a coupled transport mechanism. Remarkably, while there is a change in the shape of the conductivity dispersion and a jump in its onset frequency, there is no change in the temperature dependence of DC conductivity. What emerges from the analysis is a surprising continuity in high-frequency behaviour, with the activation energy and volume for elementary displacements, Eed and Ved, remaining constant from 300 K in the glass up to 500 K in the melt. The ratio, Eed/Ved, turns out to be equal to our previously defined DC activation moduli for CKN, given by EDC(T)/VDC(T) and Tg/(dTg/dp) for charge transport in the melt and structural relaxation at Tg, respectively. It seems that, at very short times, molten CKN behaves just like an elastic solid. The importance of elastic forces for ionic transport in CKN is corroborated by the finding that the published value of the high-frequency shear modulus of glassy CKN, G¥, matches those of Eed/Ved and hence of both activation moduli. The detected continuity in the picosecond behaviour of CKN across the glass transition could provide a new link between fragile liquids and glassy materials in general.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] C.A. Angell, Free volume model for transport in fused salts: electrical conductance in glass-forming nitrate melts, J. Phys. Chem. 68 (1964) 1917-1929.

DOI: 10.1021/j100789a042

Google Scholar

[2] H. Vogel, The law of the relation between viscosity of liquids and the temperature, Phys. Z. 22 (1921) 645-646.

Google Scholar

[3] G. Tammann, W. Hesse, Die Abhängigkeit der Viskosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Anorg. Allg. Chem. 156 (1926) 245-257.

DOI: 10.1002/zaac.19261560121

Google Scholar

[4] G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8 (1925) 339-355.

Google Scholar

[5] C.A. Angell, Oxide glasses in the light of the ideal glass, concept: I, ideal and nonideal transitions, and departure from ideality, J. Am. Ceram. Soc. 51 (1968) 117-124.

DOI: 10.1111/j.1151-2916.1968.tb11854.x

Google Scholar

[6] R. Bose, R. Weiler, P.B. Macedo, Temperature dependence of conductance of a vitreous KNO3 -Ca(NO3)2 mixture, Phys. Chem. Glasses 11 (1970) 117.

Google Scholar

[7] F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, Electrical relaxation in a glass-forming molten salt, J. Phys. Chem. 78 (1974) 639-648.

DOI: 10.1021/j100599a016

Google Scholar

[8] M.C.C. Ribeiro, T. Scopigno, G. Ruocco, Computer simulation study of thermodynamic scaling of dynamics of 2Ca(NO3)2· 3KNO3, J. Chem. Phys. 135 (2011) 164510-(1-9).

DOI: 10.1063/1.3656872

Google Scholar

[9] Z. Akdeniz, M.P. Tosi, Microstructure of mixed-nitrate melts and glasses, Phys. & Chem. Liquids 44 (2006) 361-365.

DOI: 10.1080/00319100600801785

Google Scholar

[10] C. Tengroth, J. Swenson, A. Isopo, L. Börjesson, Structure of Ca0.4 K0.6 (NO3)1.4 from the glass to the liquid state, Phys. Rev. B 64 (2001) 224207-(1-9).

Google Scholar

[11] C.A. Angell in: Relaxations in Complex Systems,, K.L. Ngai and G.B. Wright(Eds), GPO, Washington DC, U.S.A., 1985, pp.3-16.

Google Scholar

[12] V.N. Novikov, A.P. Sokolov, Poisson's ratio and the fragility of glass-forming liquids, Nature 431 (2004) 961-963.

DOI: 10.1038/nature02947

Google Scholar

[13] W. Götze, L. Sjögren, Relaxation processes in supercooled liquids, Rep. Prog. Phys. 55 (1992) 241-376.

Google Scholar

[14] G. Li, W.M. Du, X.K. Chen, H.Z. Cummins, N.J. Tao, Testing mode-coupling predictions for α and β relaxation in Ca0.4 K0.6 (NO3)1.4 near the liquid-glass transition by light scattering, Phys. Rev. A 45 (1992) 3867-3879.

Google Scholar

[15] F. Mezei, M. Russina, Intermediate range order dynamics near the glass transition, J. Phys. Condensed Matter 11(1999) A 341-A354.

DOI: 10.1088/0953-8984/11/10a/031

Google Scholar

[16] K.L. Ngai, J. Habasaki, An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at Tc or TB, J. Chem. Phys. 141(2014) 114502-(1-16).

DOI: 10.1063/1.4895554

Google Scholar

[17] C.A. Angell, J.L. Pollard, W. Strauss, Transport in Molten Salts under Pressure. I. Glass‐Forming Nitrate Melts, J. Chem. Phys. 50(1969) 2694-2705.

DOI: 10.1063/1.1671431

Google Scholar

[18] M.D. Ingram, C. T. Imrie, Z. Stoeva, S.J. Pas, K. Funke, H.W. Chandler, Activation Energy− Activation Volume Master Plots for Ion Transport Behavior in Polymer Electrolytes and Supercooled Molten Salts, J. Phys. Chem. B Letters 109 (2005) 16567-16570.

DOI: 10.1021/jp053400n

Google Scholar

[19] M.D. Ingram, C.T. Imrie, J. Ledru, J.M. Hutchinson, Unified approach to ion transport and structural relaxation in amorphous polymers and glasses, J. Phys. Chem. B 112 (2008) 859-866.

DOI: 10.1021/jp0754482

Google Scholar

[20] E. Williams, C.A. Angell, Pressure dependence of the glass transition temperature in ionic liquids and solutions. Evidence against free volume theories, J. Phys. Chem. 81 (1977) 232-237.

DOI: 10.1021/j100518a010

Google Scholar

[21] M.D. Ingram, C.T. Imrie, New insights from variable-temperature and variable-pressure studies into coupling and decoupling processes for ion transport in polymer electrolytes and glasses, Solid State Ionics 196 (2011) 9.

DOI: 10.1016/j.ssi.2011.05.019

Google Scholar

[22] Z. Wojnarowska, K.L. Ngai, M. Paluch, Invariance of conductivity relaxation under pressure and temperature variations at constant conductivity relaxation time in 0.4 Ca(NO3)2− 0.6 KNO3, Phys. Rev. E 90 (2014) 062315-(1-5).

DOI: 10.1103/physreve.90.062315

Google Scholar

[23] P. Lunkenheimer, A. Pimenov, A. Loidl, Fast dynamics in CKN and CRN investigated by dielectric spectroscopy, Phys. Rev. Letters 78 (1997) 2995-2998.

DOI: 10.1103/physrevlett.78.2995

Google Scholar

[24] J. C. Dyre, Aging of CKN: Modulus versus conductivity analysis. Phys. Rev. Letters 110 (2013) 245901-(1-4).

DOI: 10.1103/physrevlett.110.245901

Google Scholar

[25] P. Singh, R.D. Banhatti, K. Funke, Correlation between viscosity and ion dynamics in a fragile ionic melt. Phys. Chem. Glasses 46 (2005) 241-244.

Google Scholar

[26] K. Funke, R.D. Banhatti, Modelling frequency-dependent conductivities and permittivities in the framework of the MIGRATION concept, Solid State Ionics 169 (2004) 1-8.

DOI: 10.1016/j.ssi.2003.06.003

Google Scholar

[27] K. Funke, R.D. Banhatti, Ionic motion in materials with disordered structures. Solid State Ionics 177 (2006) 1551-1557.

DOI: 10.1016/j.ssi.2005.12.037

Google Scholar

[28] K. Funke, R. D. Banhatti, D. M. Laughman, L.G. Badr, M. Mutke, A. Šantić, W. Wrobel, E.M. Fellberg, C. Biermann, First and second universalities: Expeditions towards and beyond. Z. Phys. Chem. 224 (2010) 1891-1950.

DOI: 10.1524/zpch.2010.0025

Google Scholar

[29] K. Funke, M.D. Ingram, R.D. Banhatti, P. Singh, S.J. Pas, Ionic conductivity of a fragile glass-forming molten salt: Modelling its dependence on frequency, temperature, and pressure, Z. Metallkunde 95 (2004) 921-927.

DOI: 10.1515/ijmr-2004-0170

Google Scholar

[30] P. Singh, Fragility and the Coupled to Decoupled Transition in Supercooled Molten Calcium Potassium Nitrate Studied by Broad-Band Conductivity Spectroscopy, Ph.D. Thesis, University of Münster, Germany, (2005).

Google Scholar

[31] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12 (1957) 570-586.

DOI: 10.1143/jpsj.12.570

Google Scholar

[32] T. Scopigno, G. Ruocco, F. Sette, G. Monaco, Is the fragility of a liquid embedded in the properties of its glass?, Science 302 (2003) 849-852.

DOI: 10.1126/science.1089446

Google Scholar

[33] S. Summerfield, Universal low-frequency behaviour in the ac hopping conductivity of disordered systems, Phil. Mag. B, 52 (1985) 9-22.

DOI: 10.1080/13642818508243162

Google Scholar

[34] A. Šantić, W. Wrobel, M. Mutke, R.D. Banhatti, K. Funke, Frequency-dependent fluidity and conductivity of an ionic liquid, Phys. Chem. Chem. Phys. 11 (2009) 5930-5934.

DOI: 10.1039/b904186a

Google Scholar

[35] K. Funke, R.D. Banhatti, P. Grabowski, J. Nowinski, W. Wrobel, R. Dinnebier, O. Magdysyuk, Low-temperature α-AgI confined in glass: Structure and dynamics, Solid State Ionics 271 (2015) 2-9.

DOI: 10.1016/j.ssi.2014.09.033

Google Scholar

[36] K.L. Ngai, R.W. Rendell, C. Leon, The crossover from the near constant loss to ion hopping ac conductivity in ionic conductors: the crossover times, J. Non-Cryst. Solids 307 (2001) 1039-1049.

DOI: 10.1016/s0022-3093(02)01570-3

Google Scholar

[37] K. Funke, R.D. Banhatti, P. Singh, Conductivity dispersion in supercooled calcium potassium nitrate: caged ionic motion viewed as part of standard behaviour, Phys. Chem. Chem. Phys. 9 (2007) 5582-5590.

DOI: 10.1039/b618788a

Google Scholar

[38] L.M. Torell, R. Aronsson, Brillouin scattering study of elastic properties in a glass forming KNO3–Ca (NO3)2 mixture, J. Chem. Phys. 78 (1983) 1121-1125.

DOI: 10.1063/1.444896

Google Scholar

[39] D.H. Torchinsky, J.A. Johnson, K.A. Nelson, A direct test of the correlation between elastic parameters and fragility of ten glass formers and their relationship to elastic models of the glass transition, J. Chem. Phys. 130 (2009) 064502-(1-11).

DOI: 10.1063/1.3072476

Google Scholar

[40] J.C. Dyre, T. Christensen and N.B. Olsen, Elastic models for the non-Arrhenius viscosity of glass-forming liquids, J. Non-Cryst. Solids 352 (2006) 4635-4642.

DOI: 10.1016/j.jnoncrysol.2006.02.173

Google Scholar

[41] Z. Wojnarowska, M. Rams-Baron, J. Knapik-Kowalczuk, A. Połatyńska, M. Pochylski, J. Gapinski, A. Patkowski, P. Wlodarczyk, M. Paluch, Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former, Scientific Reports 7 (2017) 7084-(1-8).

DOI: 10.1038/s41598-017-07136-5

Google Scholar

[42] N.S. Bagdassarov, J. Maumus, B. Poe, A.B. Slutskiy, V.K. Bulatov, Pressure dependence of Tg in silicate glasses from electrical impedance measurements, Phys. Chem. Glasses 45 (2004) 197-214.

Google Scholar

[43] S. Mori, E. Ohtani, A. Suzuki,  Viscosity of the albite melt to 7 GPa at 2000 K, Earth and Planetary Science Letters 175 (2000) 87-92.

DOI: 10.1016/s0012-821x(99)00284-8

Google Scholar