[1]
C.A. Angell, Free volume model for transport in fused salts: electrical conductance in glass-forming nitrate melts, J. Phys. Chem. 68 (1964) 1917-1929.
DOI: 10.1021/j100789a042
Google Scholar
[2]
H. Vogel, The law of the relation between viscosity of liquids and the temperature, Phys. Z. 22 (1921) 645-646.
Google Scholar
[3]
G. Tammann, W. Hesse, Die Abhängigkeit der Viskosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Anorg. Allg. Chem. 156 (1926) 245-257.
DOI: 10.1002/zaac.19261560121
Google Scholar
[4]
G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8 (1925) 339-355.
Google Scholar
[5]
C.A. Angell, Oxide glasses in the light of the ideal glass, concept: I, ideal and nonideal transitions, and departure from ideality, J. Am. Ceram. Soc. 51 (1968) 117-124.
DOI: 10.1111/j.1151-2916.1968.tb11854.x
Google Scholar
[6]
R. Bose, R. Weiler, P.B. Macedo, Temperature dependence of conductance of a vitreous KNO3 -Ca(NO3)2 mixture, Phys. Chem. Glasses 11 (1970) 117.
Google Scholar
[7]
F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, Electrical relaxation in a glass-forming molten salt, J. Phys. Chem. 78 (1974) 639-648.
DOI: 10.1021/j100599a016
Google Scholar
[8]
M.C.C. Ribeiro, T. Scopigno, G. Ruocco, Computer simulation study of thermodynamic scaling of dynamics of 2Ca(NO3)2· 3KNO3, J. Chem. Phys. 135 (2011) 164510-(1-9).
DOI: 10.1063/1.3656872
Google Scholar
[9]
Z. Akdeniz, M.P. Tosi, Microstructure of mixed-nitrate melts and glasses, Phys. & Chem. Liquids 44 (2006) 361-365.
DOI: 10.1080/00319100600801785
Google Scholar
[10]
C. Tengroth, J. Swenson, A. Isopo, L. Börjesson, Structure of Ca0.4 K0.6 (NO3)1.4 from the glass to the liquid state, Phys. Rev. B 64 (2001) 224207-(1-9).
Google Scholar
[11]
C.A. Angell in: Relaxations in Complex Systems,, K.L. Ngai and G.B. Wright(Eds), GPO, Washington DC, U.S.A., 1985, pp.3-16.
Google Scholar
[12]
V.N. Novikov, A.P. Sokolov, Poisson's ratio and the fragility of glass-forming liquids, Nature 431 (2004) 961-963.
DOI: 10.1038/nature02947
Google Scholar
[13]
W. Götze, L. Sjögren, Relaxation processes in supercooled liquids, Rep. Prog. Phys. 55 (1992) 241-376.
Google Scholar
[14]
G. Li, W.M. Du, X.K. Chen, H.Z. Cummins, N.J. Tao, Testing mode-coupling predictions for α and β relaxation in Ca0.4 K0.6 (NO3)1.4 near the liquid-glass transition by light scattering, Phys. Rev. A 45 (1992) 3867-3879.
Google Scholar
[15]
F. Mezei, M. Russina, Intermediate range order dynamics near the glass transition, J. Phys. Condensed Matter 11(1999) A 341-A354.
DOI: 10.1088/0953-8984/11/10a/031
Google Scholar
[16]
K.L. Ngai, J. Habasaki, An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at Tc or TB, J. Chem. Phys. 141(2014) 114502-(1-16).
DOI: 10.1063/1.4895554
Google Scholar
[17]
C.A. Angell, J.L. Pollard, W. Strauss, Transport in Molten Salts under Pressure. I. Glass‐Forming Nitrate Melts, J. Chem. Phys. 50(1969) 2694-2705.
DOI: 10.1063/1.1671431
Google Scholar
[18]
M.D. Ingram, C. T. Imrie, Z. Stoeva, S.J. Pas, K. Funke, H.W. Chandler, Activation Energy− Activation Volume Master Plots for Ion Transport Behavior in Polymer Electrolytes and Supercooled Molten Salts, J. Phys. Chem. B Letters 109 (2005) 16567-16570.
DOI: 10.1021/jp053400n
Google Scholar
[19]
M.D. Ingram, C.T. Imrie, J. Ledru, J.M. Hutchinson, Unified approach to ion transport and structural relaxation in amorphous polymers and glasses, J. Phys. Chem. B 112 (2008) 859-866.
DOI: 10.1021/jp0754482
Google Scholar
[20]
E. Williams, C.A. Angell, Pressure dependence of the glass transition temperature in ionic liquids and solutions. Evidence against free volume theories, J. Phys. Chem. 81 (1977) 232-237.
DOI: 10.1021/j100518a010
Google Scholar
[21]
M.D. Ingram, C.T. Imrie, New insights from variable-temperature and variable-pressure studies into coupling and decoupling processes for ion transport in polymer electrolytes and glasses, Solid State Ionics 196 (2011) 9.
DOI: 10.1016/j.ssi.2011.05.019
Google Scholar
[22]
Z. Wojnarowska, K.L. Ngai, M. Paluch, Invariance of conductivity relaxation under pressure and temperature variations at constant conductivity relaxation time in 0.4 Ca(NO3)2− 0.6 KNO3, Phys. Rev. E 90 (2014) 062315-(1-5).
DOI: 10.1103/physreve.90.062315
Google Scholar
[23]
P. Lunkenheimer, A. Pimenov, A. Loidl, Fast dynamics in CKN and CRN investigated by dielectric spectroscopy, Phys. Rev. Letters 78 (1997) 2995-2998.
DOI: 10.1103/physrevlett.78.2995
Google Scholar
[24]
J. C. Dyre, Aging of CKN: Modulus versus conductivity analysis. Phys. Rev. Letters 110 (2013) 245901-(1-4).
DOI: 10.1103/physrevlett.110.245901
Google Scholar
[25]
P. Singh, R.D. Banhatti, K. Funke, Correlation between viscosity and ion dynamics in a fragile ionic melt. Phys. Chem. Glasses 46 (2005) 241-244.
Google Scholar
[26]
K. Funke, R.D. Banhatti, Modelling frequency-dependent conductivities and permittivities in the framework of the MIGRATION concept, Solid State Ionics 169 (2004) 1-8.
DOI: 10.1016/j.ssi.2003.06.003
Google Scholar
[27]
K. Funke, R.D. Banhatti, Ionic motion in materials with disordered structures. Solid State Ionics 177 (2006) 1551-1557.
DOI: 10.1016/j.ssi.2005.12.037
Google Scholar
[28]
K. Funke, R. D. Banhatti, D. M. Laughman, L.G. Badr, M. Mutke, A. Šantić, W. Wrobel, E.M. Fellberg, C. Biermann, First and second universalities: Expeditions towards and beyond. Z. Phys. Chem. 224 (2010) 1891-1950.
DOI: 10.1524/zpch.2010.0025
Google Scholar
[29]
K. Funke, M.D. Ingram, R.D. Banhatti, P. Singh, S.J. Pas, Ionic conductivity of a fragile glass-forming molten salt: Modelling its dependence on frequency, temperature, and pressure, Z. Metallkunde 95 (2004) 921-927.
DOI: 10.1515/ijmr-2004-0170
Google Scholar
[30]
P. Singh, Fragility and the Coupled to Decoupled Transition in Supercooled Molten Calcium Potassium Nitrate Studied by Broad-Band Conductivity Spectroscopy, Ph.D. Thesis, University of Münster, Germany, (2005).
Google Scholar
[31]
R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12 (1957) 570-586.
DOI: 10.1143/jpsj.12.570
Google Scholar
[32]
T. Scopigno, G. Ruocco, F. Sette, G. Monaco, Is the fragility of a liquid embedded in the properties of its glass?, Science 302 (2003) 849-852.
DOI: 10.1126/science.1089446
Google Scholar
[33]
S. Summerfield, Universal low-frequency behaviour in the ac hopping conductivity of disordered systems, Phil. Mag. B, 52 (1985) 9-22.
DOI: 10.1080/13642818508243162
Google Scholar
[34]
A. Šantić, W. Wrobel, M. Mutke, R.D. Banhatti, K. Funke, Frequency-dependent fluidity and conductivity of an ionic liquid, Phys. Chem. Chem. Phys. 11 (2009) 5930-5934.
DOI: 10.1039/b904186a
Google Scholar
[35]
K. Funke, R.D. Banhatti, P. Grabowski, J. Nowinski, W. Wrobel, R. Dinnebier, O. Magdysyuk, Low-temperature α-AgI confined in glass: Structure and dynamics, Solid State Ionics 271 (2015) 2-9.
DOI: 10.1016/j.ssi.2014.09.033
Google Scholar
[36]
K.L. Ngai, R.W. Rendell, C. Leon, The crossover from the near constant loss to ion hopping ac conductivity in ionic conductors: the crossover times, J. Non-Cryst. Solids 307 (2001) 1039-1049.
DOI: 10.1016/s0022-3093(02)01570-3
Google Scholar
[37]
K. Funke, R.D. Banhatti, P. Singh, Conductivity dispersion in supercooled calcium potassium nitrate: caged ionic motion viewed as part of standard behaviour, Phys. Chem. Chem. Phys. 9 (2007) 5582-5590.
DOI: 10.1039/b618788a
Google Scholar
[38]
L.M. Torell, R. Aronsson, Brillouin scattering study of elastic properties in a glass forming KNO3–Ca (NO3)2 mixture, J. Chem. Phys. 78 (1983) 1121-1125.
DOI: 10.1063/1.444896
Google Scholar
[39]
D.H. Torchinsky, J.A. Johnson, K.A. Nelson, A direct test of the correlation between elastic parameters and fragility of ten glass formers and their relationship to elastic models of the glass transition, J. Chem. Phys. 130 (2009) 064502-(1-11).
DOI: 10.1063/1.3072476
Google Scholar
[40]
J.C. Dyre, T. Christensen and N.B. Olsen, Elastic models for the non-Arrhenius viscosity of glass-forming liquids, J. Non-Cryst. Solids 352 (2006) 4635-4642.
DOI: 10.1016/j.jnoncrysol.2006.02.173
Google Scholar
[41]
Z. Wojnarowska, M. Rams-Baron, J. Knapik-Kowalczuk, A. Połatyńska, M. Pochylski, J. Gapinski, A. Patkowski, P. Wlodarczyk, M. Paluch, Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former, Scientific Reports 7 (2017) 7084-(1-8).
DOI: 10.1038/s41598-017-07136-5
Google Scholar
[42]
N.S. Bagdassarov, J. Maumus, B. Poe, A.B. Slutskiy, V.K. Bulatov, Pressure dependence of Tg in silicate glasses from electrical impedance measurements, Phys. Chem. Glasses 45 (2004) 197-214.
Google Scholar
[43]
S. Mori, E. Ohtani, A. Suzuki, Viscosity of the albite melt to 7 GPa at 2000 K, Earth and Planetary Science Letters 175 (2000) 87-92.
DOI: 10.1016/s0012-821x(99)00284-8
Google Scholar