The Vacancy-Wind Factor and the Manning Factor Occurring in Interdiffusion and Ionic Conductivity in Solids

Article Preview

Abstract:

In crystalline solids, during such processes as chemical interdiffusion in alloys, ionic conductivity and the annealing out of radiation damage there will inevitably be a net flux of vacancies. In most cases, when different species of atoms have different jump rates with vacancies within a net flux of vacancies, the phenomenon of the vacancy-wind effect will occur. This effect was first discovered in the 1960s by the late Dr John Manning. It is a subtle phenomenon that comes about because of the local redistribution of the equilibrium concentration of vacancies with respect to two or more species of drifting atoms in a driving force. The effect is captured in various ‘vacancy-wind factors’ (some of which are now sometimes called Manning factors) which formally arise from non-zero off-diagonal Onsager phenomenological transport coefficients and non-unity values of the tracer correlation factors. In this paper, the effect is reviewed and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 22)

Pages:

170-183

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Manning, Diffusion Kinetics for Atoms in Crystals (Princeton, NJ: Van Nostrand) (1968).

Google Scholar

[2] J.R. Manning, Phys. Rev. B, Vol. 4 (1971), p.1111.

Google Scholar

[3] J.R. Manning, Can. J. Phys., Vol. 46 (1968), p.2633.

Google Scholar

[4] J.R. Manning, Phys. Rev. Vol. 139 (1965), p.A2027.

Google Scholar

[5] J.R. Manning, Acta Met., Vol. 15 (1967) p.817.

Google Scholar

[6] R.E. Howard and J.R. Manning, Phys. Rev. Vol. 154 (1967) p.561.

Google Scholar

[7] J.R. Manning, Met. and Mat. Trans. B, Vol. 1 (1970) p.499.

Google Scholar

[8] J.R. Manning, Phys. Rev. Vol. 124 (1961) p.470.

Google Scholar

[9] J.R. Manning, Diffusion Kinetics and Mechanisms in Single Crystals, Geochemical Transport and Kinetics, ed. A. W. Hofmann, B.J. Giletti, H.S. Yoder Jnr. and R.A. Yund, (Carnegie Inst. Washington Publications 634, pp.3-13 (1974).

Google Scholar

[10] J.R. Manning, Phys. Rev. Vol 139 (1965) p. A126.

Google Scholar

[11] J.R. Manning, Phys. Rev. Vol 125 (1962) p.103.

Google Scholar

[12] G.E. Murch and R.J. Thorn, Phil. Mag. A, Vol. 39 (1979), p.259.

Google Scholar

[13] A. R. Allnatt and A.B. Lidard, Atomic Transport in Solids (Cambridge University Press), (1993).

Google Scholar

[14] G.E. Murch and I.V. Belova, Phil. Mag. A, Vol. 81 (2001), p.83.

Google Scholar

[15] I.V. Belova, T. Ahmed, U. Sarder, A. V. Evteev, E.V. Levchenko, G.E. Murch, Phil. Mag. Vol.97 (2017) p.230.

Google Scholar

[16] L.S. Darken, Trans. AIME, Vol. 180 (1948), p.430.

Google Scholar

[17] L.K. Moleko, A.R. Allnatt and E.L. Allnatt, Phil. Mag. A, Vol. 59 (1989), p.141.

Google Scholar

[18] I.V. Belova and G.E. Murch, Phil. Mag. A, Vol. 81 (2001), p.1749.

Google Scholar

[19] A.R. Allnatt and E.L. Allnatt, Phil. Mag. A, Vol. 49, (1984), p.625.

Google Scholar

[20] G.E. Murch, Phil. Mag. A, Vol. 46 (1982) p.575.

Google Scholar

[21] I.V. Belova and G.E. Murch, Defect and Diffusion Forum, Vols. 273-276 (2008) p.431.

Google Scholar

[22] A.B. Lidiard, Acta Met., Vol. 34 (1986) p.1487.

Google Scholar

[23] K.L. Gosain, D.K. Chaturvedi. I.V. Belova and G.E. Murch, Defect and Diffusion Forum, Vols. 251-252 (2006) p.69.

DOI: 10.4028/www.scientific.net/ddf.251-252.69

Google Scholar

[24] T.R. Paul, I.V. Belova, E.V. Levchenko, A.V. Evteev and G.E. Murch, Diffusion Foundations, Vol. 4 (2015), p.25.

Google Scholar

[25] I.V. Belova and G.E. Murch, Phil. Mag. A., Vol. 81 (2001) p.1749.

Google Scholar

[26] I.V. Belova and G.E. Murch, Phil. Mag. A., Vol. 80 (2000) p.1469.

Google Scholar

[27] G.E. Murch and Z. Qin, Defect and Diffusion Forum, Vols. 109-110 (1994), p.1.

Google Scholar

[28] G.E. Murch and C. M. Bruff, Chapter 5 in Diffusion in Solid Metals and Alloys, edited by H. Mehrer, Landolt-Bornstein, Group III, Condensed Matter, Vol 26, 1990, Springer.

DOI: 10.1007/b37801

Google Scholar

[29] I.V. Belova and G.E. Murch, Acta Mat., Vol. 55 (2007), p.627.

Google Scholar

[30] G.E. Murch, Solid State Ionics, Vol. 7 (1982), p.177.

Google Scholar

[31] H. Sato and R. Kikuchi, J. Chem. Phys., Vol. 55 (1971) p.677.

Google Scholar

[32] M. Chemla, Ann. Phys., Paris, Vol. 13 (1956), p.959.

Google Scholar

[33] A.W. Imre, S. Voss and H. Mehrer, J. Non-Cryst. Solids, Vol. 333 (2004), p.231.

Google Scholar

[34] A. Suzuki, H. Sato and R. Kikuchi, Phys. Rev. B, Vol. 29 (1984), p.3550.

Google Scholar

[35] I.V. Belova and G.E. Murch, Diffusion Foundations, Vol. 6 (2015), p.44.

Google Scholar

[36] I.V. Belova, A.R. Allnatt and G.E. Murch, Phil. Mag. Vol. 87 (2007), p.4169.

Google Scholar