[1]
JA. Rojas and K. Santos. Magnetic nanophases of iron oxide embedded in polymer. Effects of magneto-hydrodynamic treatment of pure and wastewater, 5th Latin American Congress on Biomedical Engineering CLAIB 2011 May 16-21, 2011, Habana, Cuba (2011).
DOI: 10.1007/978-3-642-21198-0_10
Google Scholar
[2]
J. Hron, J. Málek, P Pustějovská and KR. Rajagopal. On the modeling of the synovial fluid. Advances in Tribology. Volume 2010 (2010), Article ID 104957, 12 pages.
DOI: 10.1155/2010/104957
Google Scholar
[3]
F. Loix, L. Orgéas, C. Geindreau, P. Badel, P. Boisse and JF Bloch. Flow of non- Newtonian liquid polymers through deformed composites reinforcements. Composites Science and Technology. 2009; 69, 612–619.
DOI: 10.1016/j.compscitech.2008.12.007
Google Scholar
[4]
H. Yamaguchi, XR. Zhang, S. Higashi and M. Li. Study on power generation using electro-conductive polymer and its mixture with magnetic fluid. J. Magnetism and Magnetic Materials. 2008; 320(7), 1406–1411.
DOI: 10.1016/j.jmmm.2007.12.014
Google Scholar
[5]
M. Ghannam and N. Esmail. Flow behavior of enhanced oil recovery alcoflood polymers. J. Applied Polymer Science. 2002; 85 (14), 2896 - 2904.
DOI: 10.1002/app.10810
Google Scholar
[6]
RV. Williamson. The flow of pseudoplastic materials. Industrial and Engineering Chemistry. 1929; 21(11), 1108-1111.
DOI: 10.1021/ie50239a035
Google Scholar
[7]
HS. Takhar, GRS. Reddy, VM. Soundalgekar. Short communication radiation effects on MHD free convection flow of a gas past a semi-infinite vertical plate. Int. J. Numerical Methods for Heat & Fluid Flow. 1996; 6(2),77 – 83.
DOI: 10.1108/09615539610113118
Google Scholar
[8]
V. Ravi kumar, MC. Raju and GSS. Raju. Combined effects of heat absorption and MHD on convective Rivlin-Ericksen flow past a semi-infinite vertical porous plate with variable temperature and suction. Ain Shams Engineering Journal 2014; 5, 867–875.
DOI: 10.1016/j.asej.2013.12.014
Google Scholar
[9]
S. Siva Reddy and R. Srinivasa Raju. Soret Effect on Unsteady MHD Free Convective Flow Past a Semi–Infinite Vertical Plate in the Presence of Viscous Dissipation, International Journal for Computational Methods in Engineering Science and Mechanics, 2015; 16(2), 132-141.
DOI: 10.1080/15502287.2015.1009583
Google Scholar
[10]
RL. Verma, Elastico-viscous boundary-layer flow on the surface of sphere, Rhelogica Acta, Vol. 16, pp.510-515, (1977).
DOI: 10.1007/bf01525649
Google Scholar
[11]
A. Dasman, Mixed convection boundary layer flow of a viscoelastic fluid past a sphere, Masters thesis, Universiti Teknologi Malaysia, Faculty of Science, (2010).
Google Scholar
[12]
CH. Amanulla, N. Nagendra, and M. Suryanarayana Reddy. Computational analysis of non-Newtonian boundary layer flow of nanofluid past a semi-infinite vertical plate with partial slip. Nonlinear Engineering. 2018; 7(1), 29-43.
DOI: 10.1515/nleng-2017-0055
Google Scholar
[13]
BC. Prasannakumara, BJ. Gireesha, RSR. Gorla and MR. Krishnamurthy. Effects of chemical reaction and nonlinear thermal radiation on Williamson nanofluid slip flow over a stretching sheet embedded in a porous medium. J. Aerosp. Eng. 2016; 29, No. 5.
DOI: 10.1061/(asce)as.1943-5525.0000578
Google Scholar
[14]
NA. Khan and H. Khan. A Boundary layer flows of non-Newtonian Williamson fluid, Nonlinear Engineering. 2014; 3, No.2, 107–115.
DOI: 10.1515/nleng-2014-0002
Google Scholar
[15]
OA. Bég, M. Keimanesh, MM. Rashidi and M. Davoodi. Multi-step DTM simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid. Int. J. Appl. Math. Mech., 2013; 9, No. 6, 1-19.
Google Scholar
[16]
KS. Rao and PK. Rao. Fully developed free convective flow of a Williamson fluid through a porous medium in a vertical channel. Int. J. Conceptions on Computing and Information Technology, 2014; 2, 54-57.
Google Scholar
[17]
I. Dapra and G. Scarpi. Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture, Int. J. Rock Mechanics and Mining Sciences, 2007; 44, 271–278.
DOI: 10.1016/j.ijrmms.2006.07.003
Google Scholar
[18]
H. Pohlhausen. Der warmeaustrausch zwischen festen korpen und flussigkeiten mit kleiner reibng und kleiner warmeleitung. ZAMM 1921; 1, 115–121.
DOI: 10.1002/zamm.19210010205
Google Scholar
[19]
S. Ostrach. An analysis of laminar free convection flow and heat transfer along a flat plate parallel to the direction of the generating body force. NACA Report 1111; (1953).
Google Scholar
[20]
Y. Jaluria. Natural convection heat and mass transfer. Oxford: Pergamon Press; (1980).
Google Scholar
[21]
JH. Merkin. The effect of buoyancy forces on the boundary layer flow over semi-infinite vertical flat plate in a uniform free stream. J Fluid Mech. 1969; 35, 439–450.
DOI: 10.1017/s0022112069001212
Google Scholar
[22]
JR. Lloyd and EM. Sparrow. Combined forced and free convection flow on vertical surfaces. Int. J Heat Mass Transfer. 1970; 13, 434–438.
DOI: 10.1016/0017-9310(70)90119-5
Google Scholar
[23]
G. Wilks. Combined forced and free convection flow on vertical surfaces. Int. J Heat Mass Transfer. 1973; 16, 1958–(1964).
DOI: 10.1016/0017-9310(73)90216-0
Google Scholar
[24]
HS. Takhar, AJ. Chamkha and G. Nath G. Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field. Int. J Eng. Sci. 1999; 37, 1723–1736.
DOI: 10.1016/s0020-7225(98)00144-x
Google Scholar
[25]
HS. Takhar, AJ. Chamkha, RSR. Gorla. Combined convection radiation interaction along a vertical flat plate in a porous medium. Int. J Fluid Mech. Res. 2005; 32, 139–156.
DOI: 10.1615/interjfluidmechres.v32.i2.20
Google Scholar
[26]
T. Hayat, A. Shafiq and A. Alsaedi, A., Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation, Alexandria Engineering J. 2016; 55(3), 2229–2240.
DOI: 10.1016/j.aej.2016.06.004
Google Scholar
[27]
CH. Amanulla, S Saleem, A Wakif, and MM AlQarni. MHD Prandtl fluid flow past an isothermal permeable sphere with slip effects. Case Studies in Thermal Engineering. 2019; 14, 100447.
DOI: 10.1016/j.csite.2019.100447
Google Scholar
[28]
JH. Merkin. Natural convection boundary layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow. 1994; 15, 392–398.
DOI: 10.1016/0142-727x(94)90053-1
Google Scholar
[29]
M. Ramzan, M. Farooq, MS. Alhothuali, HM. Malaikah, W. Cui and T. Haya. Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. Int. J. Numer. Methods Heat Fluid Flow 2015; 25, 68–85.
DOI: 10.1108/hff-03-2014-0070
Google Scholar
[30]
A. Muhammad, T. Hayat, A. Qayyum, A. Ahmed. Newtonian heating in a flow of thixotropic fluid. Eur. Phys. J. Plus. 2013; 128, 114.
DOI: 10.1140/epjp/i2013-13114-1
Google Scholar
[31]
MJ. Uddin, OA. Bég, N. Amran, AIMD. Ismail. Lie group analysis and numerical solutions for magneto-convective slip flow of a nanofluid over a moving plate with a Newtonian heating boundary condition, Canadian. J. Phys. 2015; 93, 1–10.
DOI: 10.1139/cjp-2014-0601
Google Scholar
[32]
T. Cebeci and P. Bradshaw. Physical and Computational Aspects of Convective Heat Transfer. Springer. New York.(1984).
Google Scholar
[33]
H.B. Keller, A new difference method for parabolic problems. Numerical Methods for Partial Differential Equations. J. Bramble (Editor). Academic Press. New York. USA (1970).
Google Scholar
[34]
CH Amanulla, A Wakif, Z Boulahia, S Fazuruddin, and S Noor Mohammed. A Study on Non-Newtonian Transport Phenomena in MHD Fluid Flow from a Vertical Cone with Navier Slip and Convective Heating, Nonlinear Engineering.2019; 8(1), 534-545.
DOI: 10.1515/nleng-2018-0065
Google Scholar
[35]
CH Amanulla, A Wakif, Z Boulahia, MS Reddy, and N Nagendra. Numerical investigations on magnetic field modeling for Carreau non-Newtonian fluid flow past an isothermal sphere. J Braz. Soc. Mech. Sci. Eng. 2018; 40, 462.
DOI: 10.1007/s40430-018-1385-0
Google Scholar
[36]
N. Nagendra, CH. Amanulla, MS. Reddy and VR. Prasad. Hydromagnetic Flow of Heat and Mass Transfer in a Nano Williamson Fluid Past a Vertical Plate with Thermal and Momentum Slip Effects: Numerical Study. Nonlinear Engineering 2019; 8(1), 127-144.
DOI: 10.1515/nleng-2017-0057
Google Scholar
[37]
N. Nagendra, CH. Amanulla and MS Reddy. Mathematical analysis of non-Newtonian nanofluid transport phenomena past a truncated cone with Newtonian heating. Journal of Naval Architecture and Marine Engineering. 2018; 15(1), 17-35.
DOI: 10.3329/jname.v15i1.29966
Google Scholar
[38]
VS. Rao, LA. Baba and RS. Raju. Finite element analysis of radiation and mass transfer flow past semi-infinite moving vertical plate with viscous dissipation. J. Appl. Fluid Mech. 2013; 6(3):321–329.
DOI: 10.36884/jafm.6.03.21281
Google Scholar
[39]
S. Sato, K. Oka and A. Murakami. Heat transfer behavior of melting polymers in laminar flow field. Polym. Eng. Sci. 2004; 44, 423–432.
DOI: 10.1002/pen.20038
Google Scholar
[40]
AA. Aly. Heat treatment of polymers: a review. Int. J. Mater. Chem. Phys. 2015; 1(2), 132–140.
Google Scholar
[41]
ARM Kasim, NF. Mohammad, I. Anwar and S. Shafie. MHD effect on convective boundary layer flow of a viscoelastic fluid embedded in porous medium with Newtonian heating. Recent Adv. Math. 2013; 4, 182–189.
Google Scholar
[42]
AM. Megahed. Variable viscosity and slip velocity effects on the flow and heat transfer of a powerlaw fluid over a non-linearly stretching surface with heat flux and thermal radiation. Rheol. Acta. 2012; 51(9), 841–847.
DOI: 10.1007/s00397-012-0644-8
Google Scholar