Numerical Study of a Williamson Fluid Past a Semi-Infinite Vertical Plate with Convective Heating and Radiation Effects

Article Preview

Abstract:

In the present paper, we investigated mathematical model of the magnetohydrodynamic flow and heat transfer in an electro-conductive polymer on the externalsurface of a semi-infinite vertical plate under radial magnetic field. Thermal radiation andconvective heating effects are considered at the semi-infinite plate surface with modifiedboundary conditions. The Williamson viscoelastic model is employed which isrepresentative of certain industrial polymers. The non-dimensional, transformedboundary layer equations for momentum and energy are solved with the second orderaccurate implicit Keller box finite difference method under appropriate boundaryconditions. Validation of the numerical solutions is achieved via benchmarking withearlier published results. The influence of Williamson viscoelastic fluid parameter,magnetic body force parameter, convective heating, radiation parameter, stream wisevariable and Prandtl number on thermos-fluid characteristics are studied graphically. Themodel is relevant to the simulation of magnetic polymer materials processing.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 28)

Pages:

1-15

Citation:

Online since:

December 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] JA. Rojas and K. Santos. Magnetic nanophases of iron oxide embedded in polymer. Effects of magneto-hydrodynamic treatment of pure and wastewater, 5th Latin American Congress on Biomedical Engineering CLAIB 2011 May 16-21, 2011, Habana, Cuba (2011).

DOI: 10.1007/978-3-642-21198-0_10

Google Scholar

[2] J. Hron, J. Málek, P Pustějovská and KR. Rajagopal. On the modeling of the synovial fluid. Advances in Tribology. Volume 2010 (2010), Article ID 104957, 12 pages.

DOI: 10.1155/2010/104957

Google Scholar

[3] F. Loix, L. Orgéas, C. Geindreau, P. Badel, P. Boisse and JF Bloch. Flow of non- Newtonian liquid polymers through deformed composites reinforcements. Composites Science and Technology. 2009; 69, 612–619.

DOI: 10.1016/j.compscitech.2008.12.007

Google Scholar

[4] H. Yamaguchi, XR. Zhang, S. Higashi and M. Li. Study on power generation using electro-conductive polymer and its mixture with magnetic fluid. J. Magnetism and Magnetic Materials. 2008; 320(7), 1406–1411.

DOI: 10.1016/j.jmmm.2007.12.014

Google Scholar

[5] M. Ghannam and N. Esmail. Flow behavior of enhanced oil recovery alcoflood polymers. J. Applied Polymer Science. 2002; 85 (14), 2896 - 2904.

DOI: 10.1002/app.10810

Google Scholar

[6] RV. Williamson. The flow of pseudoplastic materials. Industrial and Engineering Chemistry. 1929; 21(11), 1108-1111.

DOI: 10.1021/ie50239a035

Google Scholar

[7] HS. Takhar, GRS. Reddy, VM. Soundalgekar. Short communication radiation effects on MHD free convection flow of a gas past a semi-infinite vertical plate. Int. J. Numerical Methods for Heat & Fluid Flow. 1996; 6(2),77 – 83.

DOI: 10.1108/09615539610113118

Google Scholar

[8] V. Ravi kumar, MC. Raju and GSS. Raju. Combined effects of heat absorption and MHD on convective Rivlin-Ericksen flow past a semi-infinite vertical porous plate with variable temperature and suction. Ain Shams Engineering Journal 2014; 5, 867–875.

DOI: 10.1016/j.asej.2013.12.014

Google Scholar

[9] S. Siva Reddy and R. Srinivasa Raju. Soret Effect on Unsteady MHD Free Convective Flow Past a Semi–Infinite Vertical Plate in the Presence of Viscous Dissipation, International Journal for Computational Methods in Engineering Science and Mechanics, 2015; 16(2), 132-141.

DOI: 10.1080/15502287.2015.1009583

Google Scholar

[10] RL. Verma, Elastico-viscous boundary-layer flow on the surface of sphere, Rhelogica Acta, Vol. 16, pp.510-515, (1977).

DOI: 10.1007/bf01525649

Google Scholar

[11] A. Dasman, Mixed convection boundary layer flow of a viscoelastic fluid past a sphere, Masters thesis, Universiti Teknologi Malaysia, Faculty of Science, (2010).

Google Scholar

[12] CH. Amanulla, N. Nagendra, and M. Suryanarayana Reddy. Computational analysis of non-Newtonian boundary layer flow of nanofluid past a semi-infinite vertical plate with partial slip. Nonlinear Engineering. 2018; 7(1), 29-43.

DOI: 10.1515/nleng-2017-0055

Google Scholar

[13] BC. Prasannakumara, BJ. Gireesha, RSR. Gorla and MR. Krishnamurthy. Effects of chemical reaction and nonlinear thermal radiation on Williamson nanofluid slip flow over a stretching sheet embedded in a porous medium. J. Aerosp. Eng. 2016; 29, No. 5.

DOI: 10.1061/(asce)as.1943-5525.0000578

Google Scholar

[14] NA. Khan and H. Khan. A Boundary layer flows of non-Newtonian Williamson fluid, Nonlinear Engineering. 2014; 3, No.2, 107–115.

DOI: 10.1515/nleng-2014-0002

Google Scholar

[15] OA. Bég, M. Keimanesh, MM. Rashidi and M. Davoodi. Multi-step DTM simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid. Int. J. Appl. Math. Mech., 2013; 9, No. 6, 1-19.

Google Scholar

[16] KS. Rao and PK. Rao. Fully developed free convective flow of a Williamson fluid through a porous medium in a vertical channel. Int. J. Conceptions on Computing and Information Technology, 2014; 2, 54-57.

Google Scholar

[17] I. Dapra and G. Scarpi. Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture, Int. J. Rock Mechanics and Mining Sciences, 2007; 44, 271–278.

DOI: 10.1016/j.ijrmms.2006.07.003

Google Scholar

[18] H. Pohlhausen. Der warmeaustrausch zwischen festen korpen und flussigkeiten mit kleiner reibng und kleiner warmeleitung. ZAMM 1921; 1, 115–121.

DOI: 10.1002/zamm.19210010205

Google Scholar

[19] S. Ostrach. An analysis of laminar free convection flow and heat transfer along a flat plate parallel to the direction of the generating body force. NACA Report 1111; (1953).

Google Scholar

[20] Y. Jaluria. Natural convection heat and mass transfer. Oxford: Pergamon Press; (1980).

Google Scholar

[21] JH. Merkin. The effect of buoyancy forces on the boundary layer flow over semi-infinite vertical flat plate in a uniform free stream. J Fluid Mech. 1969; 35, 439–450.

DOI: 10.1017/s0022112069001212

Google Scholar

[22] JR. Lloyd and EM. Sparrow. Combined forced and free convection flow on vertical surfaces. Int. J Heat Mass Transfer. 1970; 13, 434–438.

DOI: 10.1016/0017-9310(70)90119-5

Google Scholar

[23] G. Wilks. Combined forced and free convection flow on vertical surfaces. Int. J Heat Mass Transfer. 1973; 16, 1958–(1964).

DOI: 10.1016/0017-9310(73)90216-0

Google Scholar

[24] HS. Takhar, AJ. Chamkha and G. Nath G. Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field. Int. J Eng. Sci. 1999; 37, 1723–1736.

DOI: 10.1016/s0020-7225(98)00144-x

Google Scholar

[25] HS. Takhar, AJ. Chamkha, RSR. Gorla. Combined convection radiation interaction along a vertical flat plate in a porous medium. Int. J Fluid Mech. Res. 2005; 32, 139–156.

DOI: 10.1615/interjfluidmechres.v32.i2.20

Google Scholar

[26] T. Hayat, A. Shafiq and A. Alsaedi, A., Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation, Alexandria Engineering J. 2016; 55(3), 2229–2240.

DOI: 10.1016/j.aej.2016.06.004

Google Scholar

[27] CH. Amanulla, S Saleem, A Wakif, and MM AlQarni. MHD Prandtl fluid flow past an isothermal permeable sphere with slip effects. Case Studies in Thermal Engineering. 2019; 14, 100447.

DOI: 10.1016/j.csite.2019.100447

Google Scholar

[28] JH. Merkin. Natural convection boundary layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow. 1994; 15, 392–398.

DOI: 10.1016/0142-727x(94)90053-1

Google Scholar

[29] M. Ramzan, M. Farooq, MS. Alhothuali, HM. Malaikah, W. Cui and T. Haya. Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. Int. J. Numer. Methods Heat Fluid Flow 2015; 25, 68–85.

DOI: 10.1108/hff-03-2014-0070

Google Scholar

[30] A. Muhammad, T. Hayat, A. Qayyum, A. Ahmed. Newtonian heating in a flow of thixotropic fluid. Eur. Phys. J. Plus. 2013; 128, 114.

DOI: 10.1140/epjp/i2013-13114-1

Google Scholar

[31] MJ. Uddin, OA. Bég, N. Amran, AIMD. Ismail. Lie group analysis and numerical solutions for magneto-convective slip flow of a nanofluid over a moving plate with a Newtonian heating boundary condition, Canadian. J. Phys. 2015; 93, 1–10.

DOI: 10.1139/cjp-2014-0601

Google Scholar

[32] T. Cebeci and P. Bradshaw. Physical and Computational Aspects of Convective Heat Transfer. Springer. New York.(1984).

Google Scholar

[33] H.B. Keller, A new difference method for parabolic problems. Numerical Methods for Partial Differential Equations. J. Bramble (Editor). Academic Press. New York. USA (1970).

Google Scholar

[34] CH Amanulla, A Wakif, Z Boulahia, S Fazuruddin, and S Noor Mohammed. A Study on Non-Newtonian Transport Phenomena in MHD Fluid Flow from a Vertical Cone with Navier Slip and Convective Heating, Nonlinear Engineering.2019; 8(1), 534-545.

DOI: 10.1515/nleng-2018-0065

Google Scholar

[35] CH Amanulla, A Wakif, Z Boulahia, MS Reddy, and N Nagendra. Numerical investigations on magnetic field modeling for Carreau non-Newtonian fluid flow past an isothermal sphere. J Braz. Soc. Mech. Sci. Eng. 2018; 40, 462.

DOI: 10.1007/s40430-018-1385-0

Google Scholar

[36] N. Nagendra, CH. Amanulla, MS. Reddy and VR. Prasad. Hydromagnetic Flow of Heat and Mass Transfer in a Nano Williamson Fluid Past a Vertical Plate with Thermal and Momentum Slip Effects: Numerical Study. Nonlinear Engineering 2019; 8(1), 127-144.

DOI: 10.1515/nleng-2017-0057

Google Scholar

[37] N. Nagendra, CH. Amanulla and MS Reddy. Mathematical analysis of non-Newtonian nanofluid transport phenomena past a truncated cone with Newtonian heating. Journal of Naval Architecture and Marine Engineering. 2018; 15(1), 17-35.

DOI: 10.3329/jname.v15i1.29966

Google Scholar

[38] VS. Rao, LA. Baba and RS. Raju. Finite element analysis of radiation and mass transfer flow past semi-infinite moving vertical plate with viscous dissipation. J. Appl. Fluid Mech. 2013; 6(3):321–329.

DOI: 10.36884/jafm.6.03.21281

Google Scholar

[39] S. Sato, K. Oka and A. Murakami. Heat transfer behavior of melting polymers in laminar flow field. Polym. Eng. Sci. 2004; 44, 423–432.

DOI: 10.1002/pen.20038

Google Scholar

[40] AA. Aly. Heat treatment of polymers: a review. Int. J. Mater. Chem. Phys. 2015; 1(2), 132–140.

Google Scholar

[41] ARM Kasim, NF. Mohammad, I. Anwar and S. Shafie. MHD effect on convective boundary layer flow of a viscoelastic fluid embedded in porous medium with Newtonian heating. Recent Adv. Math. 2013; 4, 182–189.

Google Scholar

[42] AM. Megahed. Variable viscosity and slip velocity effects on the flow and heat transfer of a powerlaw fluid over a non-linearly stretching surface with heat flux and thermal radiation. Rheol. Acta. 2012; 51(9), 841–847.

DOI: 10.1007/s00397-012-0644-8

Google Scholar