[1]
Ligrani, P. M., Cirello, S., and Bishop, D. T., Heat Transfer, Adiabatic Effectiveness, and Injectant Distributions Downstream of a Single Row and Two Staggered Rows of Compound Angle Film-Cooling Holes, Journal of Turbomachinery, vol. 114, no. 4, pp.687-700, (1992).
DOI: 10.1115/1.2928021
Google Scholar
[2]
Ligrani P. M., J. M. Wigle, S. Ciriello, and S. M. Jackson, Film-Cooling from Holes with Compound Angle Orientations: Part 1: Results Downstream of Two Staggered Rows of Holes with 3D Spanwise Spacing, Journal of Heat Transfer, vol. 116, pp.341-352, (1994).
DOI: 10.1115/1.2911406
Google Scholar
[3]
Ligrani P.M., J.M. Wigle, and S.M. Jackson, Film-Cooling from Holes with Compound Angle Orientations: Part 2: Results Downstream of a Single Row of Holes with 6DSpanwise Spacing, Journal of Heat Transfer, vol. 116, pp.353-362, (1994).
DOI: 10.1115/1.2911407
Google Scholar
[4]
Jubran, B. A., Correlation and Prediction of Film Cooling from Two Rows of Holes, Journal of Turbomachinery, vol. 111, no. 4, pp.502-509, (1988).
DOI: 10.1115/1.3262300
Google Scholar
[5]
Rhee, D.H., Lee, Y.S., and Cho, H.H., Film Cooling Effectiveness and Heat Transfer of Rectangular-shaped Film Cooling Holes, ASME Paper GT2002, pp.1-12, (2002).
DOI: 10.1115/gt2002-30168
Google Scholar
[6]
Benabed, M., Azzi, A., and Jubran, B. A., Numerical investigation of the influence of incidence angle on asymmetrical turbine blade model showerhead film cooling effectiveness, Journal of Heat Mass Transfer, vol. 46, no. 8, p.811–819, (2010).
DOI: 10.1007/s00231-010-0644-0
Google Scholar
[7]
Qin, M., Ju, D.Y., and Oba, R., Investigation of the influence of incidence angle on the process capability of water cavitations peening, Surface & Coatings Technology, vol. 201, no. 3, pp.1409-1413, (2006).
DOI: 10.1016/j.surfcoat.2006.02.006
Google Scholar
[8]
Kebir, F., and Khorsi, A., Numerical approach at flat plate for predicting the film cooling effectiveness part a: effect blowing ratio, Diffusion Foundations, vol. 16, pp.30-44, (2018).
DOI: 10.4028/www.scientific.net/df.16.30
Google Scholar
[9]
Kebir, F., and Khorsi, A., Numerical Approach at Flat Plate for Predicting the Film Cooling Effectiveness Part B: Effect Injection Angle, Diffusion Foundations, vol. 16, pp.57-71, (2018).
DOI: 10.4028/www.scientific.net/df.16.57
Google Scholar
[10]
Kebir, F., and Azzi, A., Study of wave number effect in wavy plate for improving the film cooling effectiveness at spanwise direction, Numerical Heat Transfer, Part A: Applications, vol. 73, pp.408-427, (2019).
DOI: 10.1080/10407782.2018.1444870
Google Scholar
[11]
Korsi, A., and Azzi, A., Computation film cooling from three different holes geometries, Mechanika, vol. 6, no. 86, p.32–37, (2010).
Google Scholar
[12]
Dhungel, A., Lu, Y., and Phillips, W., Film Cooling From a Row of Holes Supplemented With Antivortex Holes, Journal of Turbomachinery, vol. 13, no. 2, pp.1-10, (2009).
DOI: 10.1115/1.2950059
Google Scholar
[13]
Kouchih, F., Boualem, K., Grine, M., Azzi, A., The Effect of an Upstream Dune-Shaped Shells on Forward and Backward Injection Hole Film Cooling, J. Heat Transfer, vo.142, (2020).
DOI: 10.1115/1.4047643
Google Scholar
[14]
Kebir, F., Computational Analysis on Gas Turbine Blade by Hole Modified for Optimization the Effectiveness, Diffusion Foundations, vol. 26, pp.157-169, (2020).
DOI: 10.4028/www.scientific.net/df.26.157
Google Scholar
[15]
Baheri Islami, S., Alavi-Tabrizi, S. P., Jubran, B. A., and Esmaeilzadeh, E., Influence of Trenched Shaped Holes on Turbine Blade Leading Edge Film Cooling, Heat Transfer Engineering, vol. 31, no. 10, p.889–906, (2010).
DOI: 10.1080/01457630903550317
Google Scholar
[16]
Khalatov, A.A., Borisov, I.I., Dashevskiy, Yu. Ya., Kovalenko, A.S., and Shevtsov, S.V., Flat plate film cooling from a single-row inclined holes embedded in a trench: effect of external turbulence and flow acceleration, Thermophysics and Aeromechanics, vol 20, no 6, p.713–719, (2013).
DOI: 10.1134/s0869864313060085
Google Scholar
[17]
Pakhomov, M.A., Terekhov1, V.I., Khalatov, A.A., and Borisov, I.I., Film cooling effectiveness with injection through circular holes embedded in a transverse trench, Thermophysics and Aeromechanics, vol. 22, no. 3, pp., 329-338, (2015).
DOI: 10.1134/s0869864315030075
Google Scholar
[18]
Khalatov, A.A., Panchenko, N. A., Borisov, I. I., and Severina, V.V., Numerical Simulation of Film Cooling with a Coolant Supplied Through Holes in a Trench, Journal of Engineering Physics and Thermophysics, vol 90, no 3, p.637–643, (2017).
DOI: 10.1007/s10891-017-1610-1
Google Scholar
[19]
He, W., Denga, Q., Zhoua, W., Gaoa, T., Feng, Z., Film cooling and aerodynamic performances of a turbine nozzle guide vane with trenched cooling holes, Applied Thermal Engineering, vol. 150, p.150–163, (2019).
DOI: 10.1016/j.applthermaleng.2019.01.002
Google Scholar
[20]
Wanga, C., Suna, X., Zhang, J., Uncertainty analysis of trench film cooling on flat plate, Applied Thermal Engineering, vol. 156, p.562–575, (2019).
DOI: 10.1016/j.applthermaleng.2019.04.099
Google Scholar
[21]
Hou, R., Wen, F., Wang, S., Luo, Y., Tang, X., Large eddy simulation of the trenched film cooling hole with different compound angles and coolant inflow orientation effects, Applied Thermal Engineering, vol. 163, (2019).
DOI: 10.1016/j.applthermaleng.2019.114397
Google Scholar
[22]
Sinha, A. K., Bogard, D. G., and Crawford, M. E., Film- Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio, Trans. ASME Journal of Turbomachinery, vol. 113, no. 3, p.442–449, (1991).
DOI: 10.1115/1.2927894
Google Scholar
[23]
Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G., Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol. 4, no. 7, pp.1510-1520, (1992).
DOI: 10.1063/1.858424
Google Scholar
[24]
Wilfert, G., and L. Fottner. 1994. The aerodynamic mixing effect of discrete cooling jets with mainstream flow on a highly loaded turbine blade., In Proc., Int. Gas Turbine and Aeroengine Congress and Exposition, V001T01A084. New York: ASME.
DOI: 10.1115/94-gt-235
Google Scholar