3D Printing in the Water Treatment Industry

Article Preview

Abstract:

The advancement of 3D printing in the past few decades propelled many ground-breaking developments in the water treatment industry. More specifically, 3D printing has the unique advantage of prototyping parts of high complexity with acute precision within a short period of time. Innovative feed spacers and membranes, which could not be fabricated using conventional methods, can now be 3D printed and evaluated in actual filtration experiments. However, there are still limitations to 3D printing such as the printing resolution, build volume and printing speed which poses some problems, especially in the fabrication of membranes. This paper presents a comprehensive and critical discussion on the 3D printed feed spacer and membrane prototypes from a 3D printing perspective.

You might also be interested in these eBooks

Info:

Pages:

1-5

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Koo, J. W.; Ho, J. S.; An, J.; Zhang, Y.; Chua, C. K.; Chong, T. H., A review on spacers and membranes: Conventional or hybrid additive manufacturing?, in Water Research 188 (2021), p.116497.

DOI: 10.1016/j.watres.2020.116497

Google Scholar

[2] Lee, J.-Y.; Tan, W. S.; An, J.; Chua, C. K.; Tang, C. Y.; Fane, A. G.; Chong, T. H., The potential to enhance membrane module design with 3D printing technology., in Journal of Membrane Science 499 (2016), pp.480-490.

DOI: 10.1016/j.memsci.2015.11.008

Google Scholar

[3] Jiang, S.; Li, Y.; Ladewig, B. P., A review of reverse osmosis membrane fouling and control strategies., in Science of The Total Environment 595 (2017), pp.567-583.

DOI: 10.1016/j.scitotenv.2017.03.235

Google Scholar

[4] Malinauskas, M.; Farsari, M.; Piskarskas, A.; Juodkazis, S., Ultrafast laser nanostructuring of photopolymers: A decade of advances., in Physics Reports 533 (2013), pp.1-31.

DOI: 10.1016/j.physrep.2013.07.005

Google Scholar

[5] Ovsianikov, A.; Mironov, V.; Stampf, J.; Liska, R., Engineering 3D cell-culture matrices: Multiphoton processing technologies for biological and tissue engineering applications., in Expert Review of Medical Devices 9 (2012), pp.613-633.

DOI: 10.1586/erd.12.48

Google Scholar

[6] Schwinge, J.; Wiley, D. E.; Fane, A. G.; Guenther, R., Characterization of a zigzag spacer for ultrafiltration., in Journal of Membrane Science 172 (2000), pp.19-31.

DOI: 10.1016/s0376-7388(00)00312-4

Google Scholar

[7] Tan, W. S.; Suwarno, S. R.; An, J.; Chua, C. K.; Fane, A. G.; Chong, T. H., Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication., in Journal of Membrane Science 537 (2017), pp.283-296.

DOI: 10.1016/j.memsci.2017.05.037

Google Scholar

[8] Yanar, N.; Son, M.; Park, H.; Choi, H., Bio-mimetically inspired 3D-printed honeycombed support (spacer) for the reduction of reverse solute flux and fouling of osmotic energy driven membranes., in Journal of Industrial and Engineering Chemistry 83 (2020), pp.343-350.

DOI: 10.1016/j.jiec.2019.12.007

Google Scholar

[9] Kerdi, S.; Qamar, A.; Vrouwenvelder, J. S.; Ghaffour, N., Fouling resilient perforated feed spacers for membrane filtration., in Water Research 140 (2018), pp.211-219.

DOI: 10.1016/j.watres.2018.04.049

Google Scholar

[10] Thomas, N.; Sreedhar, N.; Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R. K.; Arafat, H., 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation., in Desalination 443 (2018), pp.256-271.

DOI: 10.1016/j.desal.2018.06.009

Google Scholar

[11] Ali, S. M.; Qamar, A.; Phuntsho, S.; Ghaffour, N.; Vrouwenvelder, J. S.; Shon, H. K., Conceptual design of a dynamic turbospacer for efficient low pressure membrane filtration., in Desalination 496 (2020), p.114712.

DOI: 10.1016/j.desal.2020.114712

Google Scholar

[12] Perrucci, F.; Bertana, V.; Marasso, S. L.; Scordo, G.; Ferrero, S.; Pirri, C. F.; Cocuzza, M.; El-Tamer, A.; Hinze, U.; Chichkov, B. N.; Canavese, G.; Scaltrito, L., Optimization of a suspended two photon polymerized microfluidic filtration system., in Microelectronic Engineering 195 (2018), pp.95-100.

DOI: 10.1016/j.mee.2018.04.001

Google Scholar

[13] Al-Shimmery, A.; Mazinani, S.; Ji, J.; Chew, Y. M. J.; Mattia, D., 3D printed composite membranes with enhanced anti-fouling behaviour., in Journal of Membrane Science 574 (2019), pp.76-85.

DOI: 10.1016/j.memsci.2018.12.058

Google Scholar

[14] Hwa, L.; Basheer, U.; Ahmad, N.; Noor, A.; Zakaria, K., integration and fabrication of the cheap ceramic membrane through 3D printing technology (first winning paper of Elsevier 3D printing grand challenge)., in Materials Today Communications 15 (2018), pp.134-142.

DOI: 10.1016/j.mtcomm.2018.02.029

Google Scholar