[1]
Koo, J. W.; Ho, J. S.; An, J.; Zhang, Y.; Chua, C. K.; Chong, T. H., A review on spacers and membranes: Conventional or hybrid additive manufacturing?, in Water Research 188 (2021), p.116497.
DOI: 10.1016/j.watres.2020.116497
Google Scholar
[2]
Lee, J.-Y.; Tan, W. S.; An, J.; Chua, C. K.; Tang, C. Y.; Fane, A. G.; Chong, T. H., The potential to enhance membrane module design with 3D printing technology., in Journal of Membrane Science 499 (2016), pp.480-490.
DOI: 10.1016/j.memsci.2015.11.008
Google Scholar
[3]
Jiang, S.; Li, Y.; Ladewig, B. P., A review of reverse osmosis membrane fouling and control strategies., in Science of The Total Environment 595 (2017), pp.567-583.
DOI: 10.1016/j.scitotenv.2017.03.235
Google Scholar
[4]
Malinauskas, M.; Farsari, M.; Piskarskas, A.; Juodkazis, S., Ultrafast laser nanostructuring of photopolymers: A decade of advances., in Physics Reports 533 (2013), pp.1-31.
DOI: 10.1016/j.physrep.2013.07.005
Google Scholar
[5]
Ovsianikov, A.; Mironov, V.; Stampf, J.; Liska, R., Engineering 3D cell-culture matrices: Multiphoton processing technologies for biological and tissue engineering applications., in Expert Review of Medical Devices 9 (2012), pp.613-633.
DOI: 10.1586/erd.12.48
Google Scholar
[6]
Schwinge, J.; Wiley, D. E.; Fane, A. G.; Guenther, R., Characterization of a zigzag spacer for ultrafiltration., in Journal of Membrane Science 172 (2000), pp.19-31.
DOI: 10.1016/s0376-7388(00)00312-4
Google Scholar
[7]
Tan, W. S.; Suwarno, S. R.; An, J.; Chua, C. K.; Fane, A. G.; Chong, T. H., Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication., in Journal of Membrane Science 537 (2017), pp.283-296.
DOI: 10.1016/j.memsci.2017.05.037
Google Scholar
[8]
Yanar, N.; Son, M.; Park, H.; Choi, H., Bio-mimetically inspired 3D-printed honeycombed support (spacer) for the reduction of reverse solute flux and fouling of osmotic energy driven membranes., in Journal of Industrial and Engineering Chemistry 83 (2020), pp.343-350.
DOI: 10.1016/j.jiec.2019.12.007
Google Scholar
[9]
Kerdi, S.; Qamar, A.; Vrouwenvelder, J. S.; Ghaffour, N., Fouling resilient perforated feed spacers for membrane filtration., in Water Research 140 (2018), pp.211-219.
DOI: 10.1016/j.watres.2018.04.049
Google Scholar
[10]
Thomas, N.; Sreedhar, N.; Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R. K.; Arafat, H., 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation., in Desalination 443 (2018), pp.256-271.
DOI: 10.1016/j.desal.2018.06.009
Google Scholar
[11]
Ali, S. M.; Qamar, A.; Phuntsho, S.; Ghaffour, N.; Vrouwenvelder, J. S.; Shon, H. K., Conceptual design of a dynamic turbospacer for efficient low pressure membrane filtration., in Desalination 496 (2020), p.114712.
DOI: 10.1016/j.desal.2020.114712
Google Scholar
[12]
Perrucci, F.; Bertana, V.; Marasso, S. L.; Scordo, G.; Ferrero, S.; Pirri, C. F.; Cocuzza, M.; El-Tamer, A.; Hinze, U.; Chichkov, B. N.; Canavese, G.; Scaltrito, L., Optimization of a suspended two photon polymerized microfluidic filtration system., in Microelectronic Engineering 195 (2018), pp.95-100.
DOI: 10.1016/j.mee.2018.04.001
Google Scholar
[13]
Al-Shimmery, A.; Mazinani, S.; Ji, J.; Chew, Y. M. J.; Mattia, D., 3D printed composite membranes with enhanced anti-fouling behaviour., in Journal of Membrane Science 574 (2019), pp.76-85.
DOI: 10.1016/j.memsci.2018.12.058
Google Scholar
[14]
Hwa, L.; Basheer, U.; Ahmad, N.; Noor, A.; Zakaria, K., integration and fabrication of the cheap ceramic membrane through 3D printing technology (first winning paper of Elsevier 3D printing grand challenge)., in Materials Today Communications 15 (2018), pp.134-142.
DOI: 10.1016/j.mtcomm.2018.02.029
Google Scholar