[1]
Yadav, D., Garg R. K., Ahlawat, A., Chhabra, D., (2020). 3D printable biomaterials for orthopedic implants: solution for sustainable and circular economy. Resources Policy, 68.
DOI: 10.1016/j.resourpol.2020.101767
Google Scholar
[2]
Haleem, A., Javaid M., Saxena, A., (2018). Additive Manufacturing application in cardiology: A review. The Egyption Heart Journal, 70 (4) 433-441.
DOI: 10.1016/j.ehj.2018.09.008
Google Scholar
[3]
P anayotov, I., Cuisinier, F., Yachouh, J., Valerie O. (2016). Polyetheretherketone (PEEK) for medical applications. Mater Sci: Mater Med, 27 (7).
DOI: 10.1007/s10856-016-5731-4
Google Scholar
[4]
Haleem, A., Javaid M., (2018). Role of CT and MRI in the design and development of orthopedic model using additive manufacturing. Clinical Orthopaedics and Trauma, 11 (6) 1172-1174.
DOI: 10.1016/j.jcot.2018.07.002
Google Scholar
[5]
Vaezi, M., Yang, S., (2015). Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual and Physical Prototyping, 10 (3) 1-13.
DOI: 10.1080/17452759.2015.1097053
Google Scholar
[6]
Najeeb, S., Zafar, S.M., Khurshid, Z., Siddqui, F., (2015). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of Prostodontic Research, 60 (1) 12-19.
DOI: 10.1016/j.jpor.2015.10.001
Google Scholar
[7]
Roskies, M., Jordan, J.O., Fang, D., Abdallah, M.N., Hier, M.P., Mlynarek, A., Tamimi, F., Tran, S.D., (2016). Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. Biomaterial Applications, 31 (1) 132-139.
DOI: 10.1177/0885328216638636
Google Scholar
[8]
Ji, Y., Yu, X., Zhu, H., (2021). Fabrication of Mg Coating on PEEK and Antibacterial Evaluation for Bone Application. Coatings, 11, 1010.
DOI: 10.3390/coatings11081010
Google Scholar
[9]
Jalbert, F., Boetto S., Nadon, F., Lauwers, F., Schmidt, E., Lopez, R., (2014). One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants. Journal of Cranio-Maxillo-Facial Surgery, 42 (2) 141-148.
DOI: 10.1016/j.jcms.2013.04.001
Google Scholar
[10]
Dua, R., Rashad, Z., Spears, J., Dunn, G., Maxwell, M., (2021). Applications of 3D-Printed PEEK via Fused Filament Fabrication: A Systematic Review. Polymers, 13, 4046.
DOI: 10.3390/polym13224046
Google Scholar
[11]
Gilardino, M.S., Karunanayake, M., Al-Humsi, T., Izadpanah, A., Al-Ajmi, H., Marcoux, J., Atkinson, J., Farmer, J.P., (2015). A comparison and cost analysis of cranioplasty techniques: autologous bone versus custom computer-generated implants. J. Craniofac. Surg. 26 (1), 113–117.
DOI: 10.1097/scs.0000000000001305
Google Scholar
[12]
Paredes, I., Castaño-León, A.M., Munarriz, P.M., Martinez-Perez, R., Cepeda, S., Sanz, R., Alén, J.F., Lagares, A., (2014). Cranioplasty after decompressive craniectomy. A prospective series analyzing complications and clinical improvement. Neurocirugia Astur. (Astur) 26 (3), 115–125.
DOI: 10.1016/j.neucir.2014.10.001
Google Scholar
[13]
Zhang, C., Wang L., Kang, J., Fuentes, M.O., Li, D., (2020). Bionic design and verification of 3D printed PEEK costal cartilage prosthesis. Journal of the Mechanical Behavior of Biomedical Materials, 103.
DOI: 10.1016/j.jmbbm.2019.103561
Google Scholar
[14]
Spece, H., Yu T., Law, A.W., Marcolongo, M., Kurtz, S.M., (2020) 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 109.
DOI: 10.1115/1.0004270v
Google Scholar
[15]
Vogel, D., Dempwolf, H., Baumann, A., Bader, R., (2017). Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties. Mechanical Behavior of Biomedical Materials, 77 (600-608).
DOI: 10.1016/j.jmbbm.2017.09.027
Google Scholar
[16]
Oladapo, B. I., Ismail, S.O., (2020). Lattice design and 3D-printing of PEEK with Ca10(OH)(PO4)3 and in-vitrobio-composite for bone implant. International Journal of Biological Macromolecules, 165 (50-62).
DOI: 10.1016/j.ijbiomac.2020.09.175
Google Scholar
[17]
Feng, P., Wu, P., Gao, C., Yang, Y., Guo, W., Yang, W., Shuai, C., (2018). A Multimaterial Scaffold With Tunable Properties Toward Bone Tissue Repair. Advance Science 5 (6).
DOI: 10.1002/advs.201700817
Google Scholar
[18]
Wang, P. Zou, B., Ding, S., Li, L., Huang, C., (2020). Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese Journal of Aeronautics, 34 (9) 236-246.
DOI: 10.1016/j.cja.2020.05.040
Google Scholar
[19]
Li, W., Sang, L., Jian, X., Wang, J., (2020). Influence of sanding and plasma treatment on shear bond strength of 3D-printed PEI, PEEK and PEEK/CF. International Journal for Adhesion and Adhesives, 100.
DOI: 10.1016/j.ijadhadh.2020.102614
Google Scholar
[20]
Yang, C., Tian, X., Li, D., Cao, Y., Zhao, F., Shi, C., (2017). Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. Journal of Materials Processing Technology. 248 1-7.
DOI: 10.1016/j.jmatprotec.2017.04.027
Google Scholar
[21]
Rae, P.J., Brown, E.N. Orler, E.B., (2007). The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response. Polymer, 48 (2) 598-615.
DOI: 10.1016/j.polymer.2006.11.032
Google Scholar