Additive Manufacturing of Polyetheretherketone (PEEK) and its Application in Medical Implants

Article Preview

Abstract:

PEEK is a polyaromatic semi-crystalline thermoplastic polymer with good mechanical characteristics for biomedical applications. The medical field has been applying its mechanical properties to make bone implants and modeling for surgical planning using 3D printing, more formally called Additive Manufacturing (AM). This paper provides a concise discussion about PEEK and its development for orthopedic applications. Some of the designs used to fix specific issues are shown in this review paper including the mechanical properties development for PEEK to be applicable in the medical field. Challenges and prospects when 3D printing using this material on improving PEEK’s biocompatibility and ease of printing are also discussed.

You might also be interested in these eBooks

Info:

Pages:

13-18

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yadav, D., Garg R. K., Ahlawat, A., Chhabra, D., (2020). 3D printable biomaterials for orthopedic implants: solution for sustainable and circular economy. Resources Policy, 68.

DOI: 10.1016/j.resourpol.2020.101767

Google Scholar

[2] Haleem, A., Javaid M., Saxena, A., (2018). Additive Manufacturing application in cardiology: A review. The Egyption Heart Journal, 70 (4) 433-441.

DOI: 10.1016/j.ehj.2018.09.008

Google Scholar

[3] P anayotov, I., Cuisinier, F., Yachouh, J., Valerie O. (2016). Polyetheretherketone (PEEK) for medical applications. Mater Sci: Mater Med, 27 (7).

DOI: 10.1007/s10856-016-5731-4

Google Scholar

[4] Haleem, A., Javaid M., (2018). Role of CT and MRI in the design and development of orthopedic model using additive manufacturing. Clinical Orthopaedics and Trauma, 11 (6) 1172-1174.

DOI: 10.1016/j.jcot.2018.07.002

Google Scholar

[5] Vaezi, M., Yang, S., (2015). Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual and Physical Prototyping, 10 (3) 1-13.

DOI: 10.1080/17452759.2015.1097053

Google Scholar

[6] Najeeb, S., Zafar, S.M., Khurshid, Z., Siddqui, F., (2015). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of Prostodontic Research, 60 (1) 12-19.

DOI: 10.1016/j.jpor.2015.10.001

Google Scholar

[7] Roskies, M., Jordan, J.O., Fang, D., Abdallah, M.N., Hier, M.P., Mlynarek, A., Tamimi, F., Tran, S.D., (2016). Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. Biomaterial Applications, 31 (1) 132-139.

DOI: 10.1177/0885328216638636

Google Scholar

[8] Ji, Y., Yu, X., Zhu, H., (2021). Fabrication of Mg Coating on PEEK and Antibacterial Evaluation for Bone Application. Coatings, 11, 1010.

DOI: 10.3390/coatings11081010

Google Scholar

[9] Jalbert, F., Boetto S., Nadon, F., Lauwers, F., Schmidt, E., Lopez, R., (2014). One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants. Journal of Cranio-Maxillo-Facial Surgery, 42 (2) 141-148.

DOI: 10.1016/j.jcms.2013.04.001

Google Scholar

[10] Dua, R., Rashad, Z., Spears, J., Dunn, G., Maxwell, M., (2021). Applications of 3D-Printed PEEK via Fused Filament Fabrication: A Systematic Review. Polymers, 13, 4046.

DOI: 10.3390/polym13224046

Google Scholar

[11] Gilardino, M.S., Karunanayake, M., Al-Humsi, T., Izadpanah, A., Al-Ajmi, H., Marcoux, J., Atkinson, J., Farmer, J.P., (2015). A comparison and cost analysis of cranioplasty techniques: autologous bone versus custom computer-generated implants. J. Craniofac. Surg. 26 (1), 113–117.

DOI: 10.1097/scs.0000000000001305

Google Scholar

[12] Paredes, I., Castaño-León, A.M., Munarriz, P.M., Martinez-Perez, R., Cepeda, S., Sanz, R., Alén, J.F., Lagares, A., (2014). Cranioplasty after decompressive craniectomy. A prospective series analyzing complications and clinical improvement. Neurocirugia Astur. (Astur) 26 (3), 115–125.

DOI: 10.1016/j.neucir.2014.10.001

Google Scholar

[13] Zhang, C., Wang L., Kang, J., Fuentes, M.O., Li, D., (2020). Bionic design and verification of 3D printed PEEK costal cartilage prosthesis. Journal of the Mechanical Behavior of Biomedical Materials, 103.

DOI: 10.1016/j.jmbbm.2019.103561

Google Scholar

[14] Spece, H., Yu T., Law, A.W., Marcolongo, M., Kurtz, S.M., (2020) 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 109.

DOI: 10.1115/1.0004270v

Google Scholar

[15] Vogel, D., Dempwolf, H., Baumann, A., Bader, R., (2017). Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties. Mechanical Behavior of Biomedical Materials, 77 (600-608).

DOI: 10.1016/j.jmbbm.2017.09.027

Google Scholar

[16] Oladapo, B. I., Ismail, S.O., (2020). Lattice design and 3D-printing of PEEK with Ca10(OH)(PO4)3 and in-vitrobio-composite for bone implant. International Journal of Biological Macromolecules, 165 (50-62).

DOI: 10.1016/j.ijbiomac.2020.09.175

Google Scholar

[17] Feng, P., Wu, P., Gao, C., Yang, Y., Guo, W., Yang, W., Shuai, C., (2018). A Multimaterial Scaffold With Tunable Properties Toward Bone Tissue Repair. Advance Science 5 (6).

DOI: 10.1002/advs.201700817

Google Scholar

[18] Wang, P. Zou, B., Ding, S., Li, L., Huang, C., (2020). Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese Journal of Aeronautics, 34 (9) 236-246.

DOI: 10.1016/j.cja.2020.05.040

Google Scholar

[19] Li, W., Sang, L., Jian, X., Wang, J., (2020). Influence of sanding and plasma treatment on shear bond strength of 3D-printed PEI, PEEK and PEEK/CF. International Journal for Adhesion and Adhesives, 100.

DOI: 10.1016/j.ijadhadh.2020.102614

Google Scholar

[20] Yang, C., Tian, X., Li, D., Cao, Y., Zhao, F., Shi, C., (2017). Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. Journal of Materials Processing Technology. 248 1-7.

DOI: 10.1016/j.jmatprotec.2017.04.027

Google Scholar

[21] Rae, P.J., Brown, E.N. Orler, E.B., (2007). The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response. Polymer, 48 (2) 598-615.

DOI: 10.1016/j.polymer.2006.11.032

Google Scholar