[1]
Riché, Pierre, Thomas, R. Murray , Mukerji, S.N., Graham, Hugh F. , Swink, Roland Lee , Gelpi, Ettore, Nakosteen, Mehdi K., Browning, Robert , Lauwerys, Joseph Albert, Marrou, Henri-Irénée, Lawson, Robert Frederic , Szyliowicz, Joseph S. , Chambliss, J.J. , Scanlon, David G., Chen, Theodore Hsi-en, Vázquez, Josefina Zoraida , Ipfling, Heinz-Jürgen , Anweiler, Oskar, Moumouni, Abdou, Huq, Muhammad Shamsul , Arnove, Robert F. , Shimahara, Nobuo, Meyer, Adolphe Erich, Naka, Arata and Bowen, James. Education,. Encyclopedia Britannica, 1 May. 2021, https://www.britannica.com/topic/education. Accessed 11 September (2021).
Google Scholar
[2]
García-Peñalvo, F.J., & Colomo-Palacios, R.(2015). Innovative teaching methods in Engineering. International Journal of Engineering Education (IJEE), 31(3), 689-693.
Google Scholar
[3]
Ford, Simon & Minshall, Tim. (2017). Invited review article: Where and how 3D printing is used in teaching and education.
DOI: 10.1016/j.addma.2018.10.028
Google Scholar
[4]
P. Blikstein, Digital Fabrication and Making, in Education: The Democratization of Invention, in: J. Walter-Herrmann, C. Büching (Eds.), FabLabs Mach. Makers Invent., Transcript Publishers, Bielefeld, 2013: p.1–21.
Google Scholar
[5]
The Top 5 Benefits of 3D Printing in Education, MakerBot, 2021, [Online] https://www.makerbot.com/stories/3d-printing-education/5-benefits-of-3d-printing/. Accessed September (2021).
DOI: 10.2139/ssrn.2544970
Google Scholar
[6]
ISO/ASTM 52900 – Additive Manufacturing – General Principles – Fundamentals and vocabulary https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:dis:ed-2:v1:en.
DOI: 10.31030/2631641
Google Scholar
[7]
J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, Mechanical characterization of 3D-printed polymers,, Addit. Manuf., vol. 20, no. January 2018, p.44–67, 2018,.
DOI: 10.1016/j.addma.2017.12.002
Google Scholar
[8]
A. H. Espera, J. R. C. Dizon, Q. Chen, and R. C. Advincula, 3D-printing and advanced manufacturing for electronics,, Prog. Addit. Manuf., vol. 4, no. 3, p.245–267, 2019,.
DOI: 10.1007/s40964-019-00077-7
Google Scholar
[9]
M. T. Espino, B. J. Tuazon, G. S. Robles, J. R. C. Dizon, Application of Taguchi Methodology in Evaluating the Rockwell Hardness of SLA 3D Printed Polymers, Materials Science Forum 1005, (August 2020): 166–73.
DOI: 10.4028/www.scientific.net/msf.1005.166
Google Scholar
[10]
L. D. Tijing, J. R. C. Dizon, I. Ibrahim, A. R. N. Nisay, H. K. Shon, and R. C. Advincula, 3D printing for membrane separation, desalination and water treatment,, Appl. Mater. Today, vol. 18, p.100486, 2020,.
DOI: 10.1016/j.apmt.2019.100486
Google Scholar
[11]
B. J. Tuazon, M.T. Espino, J. R. C. Dizon., Investigation on the Effects of Acetone Vapor-Polishing to Fracture Behavior of ABS Printed Materials at Different Operating Temperature, Materials Science Forum 1005 (August 2020): 141–49.
DOI: 10.4028/www.scientific.net/msf.1005.141
Google Scholar
[12]
Amit Kothari, What Are the Different Types of 3D Printing?, FutureLearn, [Online] https://www.futurelearn.com/info/courses/getting-started-with-digital-manufacturing/0/steps/184102 Accessed September (2021).
Google Scholar
[13]
McKinsey Global Institute, Disruptive Technologies: Advances that will Transform Life, Business, and the Global Economy http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/disruptive-technologies Accessed September (2021).
Google Scholar
[14]
Z. Hannes, H. Matthias, E. Claus, Laser welding of additively manufactured medium manganese steel alloy with conventionally manufactured dual-phase steel,, Procedia CIRP, vol. 94, pp.655-60, (2020).
DOI: 10.1016/j.procir.2020.09.102
Google Scholar
[15]
Mathias Wiese, Alexander Leiden, Christopher Rogall, Sebastian Thiede, Christoph Herrmann, Modeling energy and resource use in additive manufacturing of automotive series parts with multi-jet fusion and selective laser sintering, Procedia CIRP, Volume 98, 2021, Pages 358-363, ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.01.117.
DOI: 10.1016/j.procir.2021.01.117
Google Scholar
[16]
Nic Gardner, Introduction to 3D printing in the maritime industry, 2021, [Online] https://thetius.com/3d-printing-in-the-maritime-industry/.
Google Scholar
[17]
Graeme Temple, 3D printing & the marine industry, SAFETY4SEA, September 25, 2018, [Online] https://safety4sea.com/3d-printing-the-marine-industry/ Accessed September (2021).
Google Scholar
[18]
Marcin Ziółkowski and Tomasz Dyl, Possible Applications of Additive Manufacturing Technologies in Shipbuilding: A Review Machines 2020, 8, 84;.
DOI: 10.3390/machines8040084
Google Scholar
[19]
Vujović, Igor & Kuzmanić, Ivica & Kulenović, Zlatan. (2018). Additive Manufacturing Of Spare Parts In Maritime Industry – Technology Transfer In Mariner Education.
Google Scholar
[20]
Holweg, M. (2015, June 23). The Limits of 3D Printing. Harvard Business Review. https://hbr.org/2015/06/the-limits-of-3d-printing Accessed September (2021).
Google Scholar
[21]
3D Printing Media Network. (n.d.). Maritime Industry Additive Manufacturing » 3dpbm. 3D Printing Media Network - The Pulse of the AM Industry. Retrieved July 30, 2021, [Online] https://www.3dprintingmedia.network/category/industry/marine/?fbclid=IwAR0sOwsGMm2AtCSwgKFxSXy7OJzmJutjHFE1haN7U5igSZuhhTYVALrQ9d4.
Google Scholar
[22]
3D Printing: Rising to the Challenge in Ship Design, Verdict Media Limited, 26 Oct 2015, [Online] https://www.ship-technology.com/features/feature3d-printing-rising-to-the-challenge-in-ship-design-4672912/ Accessed September (2021).
Google Scholar
[23]
Testing New Waters: Maritime Industry Adopts 3D Printing for Ship Models and Parts. (2019, September). Retrieved July 26, 2021, from https://www.raise3d.com/case/3d-printing-in-the-maritime-industry/?fbclid=IwAR3YfJPUzGmy7ATSpnns1xK5OmxD5LcTOvg_GKv3gUS2bcf5kMRN6dPT3f8.
Google Scholar
[24]
Kostidi, Eva - Evanthia & Nikitakos, Nikitas. (2018). Is It Time for the Maritime Industry to Embrace 3d Printed Spare Parts?, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 12. 557-564. 10.12716/1001.12.03.16.
DOI: 10.12716/1001.12.03.16
Google Scholar
[25]
3D-printed spare parts revolutionize maritime supply chain - Bulker insights - MARITIME IMPACT - DNV. (2020, April 13). Retrieved July 26, 2021, from https://www.dnv.com/expert-story/maritime-impact/3D-printed-spare-parts-revolutionize-maritime-supply-chain.html.
DOI: 10.1201/9781315099088-28
Google Scholar
[26]
Sher, D. (2020, December 24). Wärtsilä WHAM prepares to 3D print critical engine parts " 3dpbm. Retrieved from https://www.3dprintingmedia.network/wartsila-wham-prepares-to-3d-print-critical-engine-parts/.
Google Scholar
[27]
J. R. C. Dizon, C. C. L. Gache, H. M. S. Cascolan, L. T. Cancino, and R. C. Advincula, Post-Processing of 3D-Printed Polymers,, no. August, 2021,.
DOI: 10.3390/technologies9030061
Google Scholar
[28]
Raicu, A., & Oanta, E. M. (2016). PLM in the context of the maritime virtual education. Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VIII.
DOI: 10.1117/12.2243343
Google Scholar
[29]
Assante, D., Cennamo, G. M., & Placidi, L. (2020). 3D Printing in Education: an European perspective. 2020 IEEE Global Engineering Education Conference (EDUCON).
DOI: 10.1109/educon45650.2020.9125311
Google Scholar