[1]
P. K. Kameswaran, B. Vasu, P. V. S. N. Murthy, R. S. R. Gorla, Mixed convection from a wavy surface embedded in a thermally stratified nanofluid saturated porous medium with non-linear Boussinesq, International Communications in Heat and Mass Transfer, 77 (2016), 78-86.
DOI: 10.1016/j.icheatmasstransfer.2016.07.006
Google Scholar
[2]
R. Kandasamy, N. A. Adnan, R. Mohammad, Nanoparticle shape effects on squeezed MHD flow of water based Cu, Al2O3 and SWCNTs over a porous sensor surface, Alexandria Engineering Journal, 57 (2018), 1433-1445.
DOI: 10.1016/j.aej.2017.03.011
Google Scholar
[3]
W. Abbas, M. M. Magdy, Heat and mass transfer analysis of nanofluid flow based on Cu, Al2O3, and TiO2 over a moving rotating plate and impact of various nanoparticle shapes, Mathematical Problems in Engineering, 2020, Article ID 9606382, 1-12.
DOI: 10.1155/2020/9606382
Google Scholar
[4]
I. G. Rosales, G. I. Duharte, A. L. Grijalva, O. L. Danguillecourt, J. R. Nava, Entropy generation minimization and nonlinear heat transport in MHD flow of a couple stress nanofluid through an inclined permeable channel with a porous medium, thermal radiation and slip, Heat Transfer, 49 (2020), 4878-4906.
DOI: 10.1002/htj.21858
Google Scholar
[5]
A. T. Adeshina, J. A. Gbadeyan, R. S. Lebelo, Heat transport of Casson nanofluid flow over a melting riga plate embedded in a porous medium, International Journal of Engineering Research in Africa, 55 (2021), 15-27.
DOI: 10.4028/www.scientific.net/jera.55.15
Google Scholar
[6]
U. Himanshu, N. Joshi, A. K. Pandey, S. K. Rawat, Assessment of convective heat transfer in sisko fluid flow via stretching surface due to viscous dissipation and suction, Nanoscience and Technology: An International Journal, 13 (2022), 31-44.
DOI: 10.1615/nanoscitechnolintj.2022039531
Google Scholar
[7]
V. Sridhar, K. Ramesh, Peristaltic activity of thermally radiative magneto-nanofluid with electro-osmosis and entropy analysis, Heat Transfer, 51 (2022), 1668-1690.
DOI: 10.1002/htj.22369
Google Scholar
[8]
R. Hemalatha, P. K. Kameswaran, Influence of nanoparticle shapes with variable permeability on non-Darcy porous medium, Journal of Porous Media, 25 (2022), 71-89.
DOI: 10.1615/jpormedia.2021040133
Google Scholar
[9]
R. S. Lebelo, O. D. Makinde, Numerical investigation of CO2 emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe, Advances in Mechanical Engineering, 7 (2015), 1-11.
DOI: 10.1177/1687814015620323
Google Scholar
[10]
O. D. Makinde, M. Venkateswarlu, R. L. Monaledi, Unsteady MHD flow of radiating and rotating fluid with Hall current and thermal diffusion past a moving plate in a porous medium, Defect and Diffusion Forum, 389 (2018), 71-85.
DOI: 10.4028/www.scientific.net/ddf.389.71
Google Scholar
[11]
S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction, Neural Computing and Applications, 30 (2018), 789-797.
DOI: 10.1007/s00521-016-2688-7
Google Scholar
[12]
M. Venkateswarlu, O. D. Makinde, Unsteady MHD slip flow with radiative heat and mass transfer over an inclined plate embedded in a porous medium, Defect and Diffusion Forum, 384 (2018), 31-48.
DOI: 10.4028/www.scientific.net/ddf.384.31
Google Scholar
[13]
R. S. Lebelo, K. C. Moloi, C. C. Chitumwa, M. W. R. Sadiki, P. Baloyi, S. O. Adesanya, On thermal stability analysis of a convective and radiative slab of variable thermal conductivity with reactant consumption, Defect and Diffusion Forum, 389 (2018), 195-204.
DOI: 10.4028/www.scientific.net/ddf.389.195
Google Scholar
[14]
R. S. Lebelo, K. C. Moloi, Transient heat analysis in a two-step radiative combustible slab, Key Engineering Materials, 872 (2021), 15-19.
DOI: 10.4028/www.scientific.net/kem.872.15
Google Scholar
[15]
A. H. Upreti, S. K. Rawat, M. Kumar, Radiation and non-uniform heat sink/source effects on 2D MHD flow of CNTs-H2O nanofluid over a flat porous plate, Multidiscipline Modeling in Materials and Structures, 16 (2020), 791-809.
DOI: 10.1108/mmms-08-2019-0153
Google Scholar
[16]
M. Venkateswarlu, O. D. Makinde, D. V. Lakshmi, Influence of thermal radiation and heat generation on steady hydromagnetic flow in a vertical micro-porous-channel in presence of suction/injection, Journal of Nanofluids, 8 (2019), 1010-1019.
DOI: 10.1166/jon.2019.1647
Google Scholar
[17]
M. Venkateswarlu, O. D. Makinde, P. Rami Reddy, Influence of Hall current and thermal diffusion on radiative hydromagnetic flow of a rotating fluid in the presence of heat absorption, Journal of Nanofluids, 8 (2019), 756-766.
DOI: 10.1166/jon.2019.1638
Google Scholar
[18]
M. Venkateswarlu, D. Venkata Lakshmi, O. D. Makinde, Thermodynamics analysis of Hall current and Soret number on hydromagnetic coquette flow in a rotating system with a convective boundary condition, Heat Transfer Research, 51 (2020), 83-101.
DOI: 10.1615/heattransres.2019027139
Google Scholar
[19]
M. Venkateswarlu, P. Bhaskar, O. D. Makinde, Mathematical study of nonlinear mixed convection unsteady flow in a parallel plate inclined channel in the proximity of time periodic boundary conditions: flow reversal, Journal of Nanofluids, 10 (2021), 598-607.
DOI: 10.1166/jon.2021.1802
Google Scholar
[20]
M. Venkateswarlu, D. Venkata Lakshmi, Diffusion-thermo and heat source effects on the unsteady radiative MHD boundary layer slip flow past an infinite vertical porous plate, Journal of Naval Architecture and Marine Engineering, 18 (2021), 55-72, 2021.
DOI: 10.3329/jname.v18i1.33024
Google Scholar
[21]
U. Himanshu, A. K. Pandey, M. Kumar, Assessment of entropy generation and heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids, Journal of Porous Media, 24 (2021), 35-50.
DOI: 10.1615/jpormedia.2021036038
Google Scholar
[22]
N. Joshi, A. K, Pandey, H. Upreti, M. Kumar, Mixed convection flow of magnetic hybrid nanofluid over a bidirectional porous surface with internal heat generation and a higher- order chemical reaction, Heat Transfer, 50 (2021), 3661-3682.
DOI: 10.1002/htj.22046
Google Scholar
[23]
Y. M. Chu, S. Bashir, M. Ramzan, M. Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects, Mathematical Methods in the Applied Sciences, 2022; pp.1-15.
DOI: 10.1002/mma.8234
Google Scholar
[24]
M. Ramzan, N. Shahmir, H. Alotaibi, H. A. S. Ghazwani, T. Muhammad, Thermal performance comparative analysis of nanofluid flows at an oblique stagnation point considering Xue model: a solar application, Journal of Computational Design and Engineering, 9 (2022), 201-215.
DOI: 10.1093/jcde/qwab076
Google Scholar
[25]
M. Bilal, I. Asghar, M. Ramzan, K. S. Nisar, A. H Abdel Aty, I. S. Yahia, H. A. S. Ghazwani, Dissipated electroosmotic EMHD hybrid nanofluid flow through the micro- channel, Scientific Reports, 12 (2022), Article ID: 4771.
DOI: 10.1038/s41598-022-08672-5
Google Scholar
[26]
M. Ramzan, N. Shahmir, H. A. S. Ghazwani, K. S. Nisar, F. M. Alharbi, I. S. Yahia, Hydrodynamic and heat transfer analysis of dissimilar shaped nanoparticles-based hybrid nanofluids in a rotating frame with convective boundary condition. Scientific Reports, 12 (2022), Article ID: 436
DOI: 10.1038/s41598-021-04173-z
Google Scholar
[27]
M. Y. Malik, M. Naseer, S. Nadeem, A. Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Applied Nanoscience, 4 (2013), 869-873.
DOI: 10.1007/s13204-013-0267-0
Google Scholar
[28]
M. H. Aboalbashari, N. Freidoonimehr, F. Nazar, M. M. Rashidi, Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface, Advanced Powder Technology, 26 (2015), 542-552.
DOI: 10.1016/j.apt.2015.01.003
Google Scholar
[29]
E. H. Aly, A. Ebaid, Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium, Journal of Molecular Liquids, 215 (2016), 625-639.
DOI: 10.1016/j.molliq.2015.12.108
Google Scholar
[30]
S. Y. Ahmed, M. Y. Jabbar, H. K. Hamzah, F. H. Ali, A. K. Hussein, Mixed convection of nanofluid in a square enclosure with a hot bottom wall and a conductive half-immersed rotating circular cylinder, Heat Transfer Asian Res, 49 (2020), 4173-4203.
DOI: 10.1002/htj.21822
Google Scholar
[31]
Z. Z. J. Lim, J. E. J. Li, C. T. Ng, L. Y. L. Yung, B. H. Bay, Gold nanoparticles in cancer therapy, Acta Pharmacologica Sinica, 32 (2011), 983-990.
DOI: 10.1038/aps.2011.82
Google Scholar
[32]
R. Arvizo, R. Bhattacharya, P. Mukherjee, Gold nanoparticles: opportunities and challenges in nanomedicine, Expert opinion on drug delivery, 7 (2010), 753-763.
DOI: 10.1517/17425241003777010
Google Scholar
[33]
J. B. Vines, J. H. Yoon, N. E. Ryu, D. J. Lim, H.Park, Gold Nanoparticles for Photothermal Cancer Therapy, Frontiers in chemistry, 7 (2019), Article 167, 1-16.
DOI: 10.3389/fchem.2019.00167
Google Scholar
[34]
R. Iwatsu, J. M. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable vertical temperature gradient, International Journal of Heat and Mass Transfer, 36 (1993), 1601-1608.
DOI: 10.1016/s0017-9310(05)80069-9
Google Scholar
[35]
U. Rashid, A. Iqbal, H. Liang, J. Rahman, Effects of gold nanoparticles shapes on magnetohydrodynamic flow and heat transfer in the presence of thermal radiation, Journal of Magnetics, 25 (2020), 319-329.
DOI: 10.4283/jmag.2020.25.3.319
Google Scholar
[36]
M. Venkateswarlu, P. Bhaskar, Mathematical study of imposed magnetic field on radiative MHD Casson fluid flow in a micro-channel with asymmetric heating, Journal of Nanofluids, 10 (2021), 496-508.
DOI: 10.1166/jon.2021.1810
Google Scholar