Mathematical Analysis of Gold, Platinum, and Magnetite Nanoparticle Shapes on Unsteady Radiative Flow of Nanoliquid along an Infinite Vertical Flat Plate in the Proximity of Convective Boundary Condition

Article Preview

Abstract:

In this article, the heat transfer and flow pattern characteristics are discussed in the proximity of convective boundary condition for three kinds of nanoparticles, namely gold, Platinum and magnetite with three different shapes, namely spherical, platelets, and lamina. Here water is taken as a base liquid. The thermal radiation impact is assumed into account. The partial differential equations are shifted into ordinary differential equations by applying an acceptable transformation and then exact solutions are acquired by promoting the Laplace transform technique. Solid volume fraction is fluctuated as 5%, 10%, 15%, and 20%. The variations of nanoliquid motion and heat transfer are displayed graphically as well as the numerical values of skin friction and rate of heat transfer at the plate are displayed in tabular pattern. In particular, the liquid motion as well as the heat transfer is least for lamina type nanoparticles, medium for platelet type nanoparticles, and greatest for spherical type nanoparticles. Moreover, the skin friction escalates and the rate of heat transfer declines for three types of nanoliquids in three distinct shapes with the progress of time. This report can be further utilized to authenticate the effectiveness of acquired mathematical results for another sophisticated nanoliquid problems.

You might also be interested in these eBooks

Info:

Pages:

3-21

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. K. Kameswaran, B. Vasu, P. V. S. N. Murthy, R. S. R. Gorla, Mixed convection from a wavy surface embedded in a thermally stratified nanofluid saturated porous medium with non-linear Boussinesq, International Communications in Heat and Mass Transfer, 77 (2016), 78-86.

DOI: 10.1016/j.icheatmasstransfer.2016.07.006

Google Scholar

[2] R. Kandasamy, N. A. Adnan, R. Mohammad, Nanoparticle shape effects on squeezed MHD flow of water based Cu, Al2O3 and SWCNTs over a porous sensor surface, Alexandria Engineering Journal, 57 (2018), 1433-1445.

DOI: 10.1016/j.aej.2017.03.011

Google Scholar

[3] W. Abbas, M. M. Magdy, Heat and mass transfer analysis of nanofluid flow based on Cu, Al2O3, and TiO2 over a moving rotating plate and impact of various nanoparticle shapes, Mathematical Problems in Engineering, 2020, Article ID 9606382, 1-12.

DOI: 10.1155/2020/9606382

Google Scholar

[4] I. G. Rosales, G. I. Duharte, A. L. Grijalva, O. L. Danguillecourt, J. R. Nava, Entropy generation minimization and nonlinear heat transport in MHD flow of a couple stress nanofluid through an inclined permeable channel with a porous medium, thermal radiation and slip, Heat Transfer, 49 (2020), 4878-4906.

DOI: 10.1002/htj.21858

Google Scholar

[5] A. T. Adeshina, J. A. Gbadeyan, R. S. Lebelo, Heat transport of Casson nanofluid flow over a melting riga plate embedded in a porous medium, International Journal of Engineering Research in Africa, 55 (2021), 15-27.

DOI: 10.4028/www.scientific.net/jera.55.15

Google Scholar

[6] U. Himanshu, N. Joshi, A. K. Pandey, S. K. Rawat, Assessment of convective heat transfer in sisko fluid flow via stretching surface due to viscous dissipation and suction, Nanoscience and Technology: An International Journal, 13 (2022), 31-44.

DOI: 10.1615/nanoscitechnolintj.2022039531

Google Scholar

[7] V. Sridhar, K. Ramesh, Peristaltic activity of thermally radiative magneto-nanofluid with electro-osmosis and entropy analysis, Heat Transfer, 51 (2022), 1668-1690.

DOI: 10.1002/htj.22369

Google Scholar

[8] R. Hemalatha, P. K. Kameswaran, Influence of nanoparticle shapes with variable permeability on non-Darcy porous medium, Journal of Porous Media, 25 (2022), 71-89.

DOI: 10.1615/jpormedia.2021040133

Google Scholar

[9] R. S. Lebelo, O. D. Makinde, Numerical investigation of CO2 emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe, Advances in Mechanical Engineering, 7 (2015), 1-11.

DOI: 10.1177/1687814015620323

Google Scholar

[10] O. D. Makinde, M. Venkateswarlu, R. L. Monaledi, Unsteady MHD flow of radiating and rotating fluid with Hall current and thermal diffusion past a moving plate in a porous medium, Defect and Diffusion Forum, 389 (2018), 71-85.

DOI: 10.4028/www.scientific.net/ddf.389.71

Google Scholar

[11] S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction, Neural Computing and Applications, 30 (2018), 789-797.

DOI: 10.1007/s00521-016-2688-7

Google Scholar

[12] M. Venkateswarlu, O. D. Makinde, Unsteady MHD slip flow with radiative heat and mass transfer over an inclined plate embedded in a porous medium, Defect and Diffusion Forum, 384 (2018), 31-48.

DOI: 10.4028/www.scientific.net/ddf.384.31

Google Scholar

[13] R. S. Lebelo, K. C. Moloi, C. C. Chitumwa, M. W. R. Sadiki, P. Baloyi, S. O. Adesanya, On thermal stability analysis of a convective and radiative slab of variable thermal conductivity with reactant consumption, Defect and Diffusion Forum, 389 (2018), 195-204.

DOI: 10.4028/www.scientific.net/ddf.389.195

Google Scholar

[14] R. S. Lebelo, K. C. Moloi, Transient heat analysis in a two-step radiative combustible slab, Key Engineering Materials, 872 (2021), 15-19.

DOI: 10.4028/www.scientific.net/kem.872.15

Google Scholar

[15] A. H. Upreti, S. K. Rawat, M. Kumar, Radiation and non-uniform heat sink/source effects on 2D MHD flow of CNTs-H2O nanofluid over a flat porous plate, Multidiscipline Modeling in Materials and Structures, 16 (2020), 791-809.

DOI: 10.1108/mmms-08-2019-0153

Google Scholar

[16] M. Venkateswarlu, O. D. Makinde, D. V. Lakshmi, Influence of thermal radiation and heat generation on steady hydromagnetic flow in a vertical micro-porous-channel in presence of suction/injection, Journal of Nanofluids, 8 (2019), 1010-1019.

DOI: 10.1166/jon.2019.1647

Google Scholar

[17] M. Venkateswarlu, O. D. Makinde, P. Rami Reddy, Influence of Hall current and thermal diffusion on radiative hydromagnetic flow of a rotating fluid in the presence of heat absorption, Journal of Nanofluids, 8 (2019), 756-766.

DOI: 10.1166/jon.2019.1638

Google Scholar

[18] M. Venkateswarlu, D. Venkata Lakshmi, O. D. Makinde, Thermodynamics analysis of Hall current and Soret number on hydromagnetic coquette flow in a rotating system with a convective boundary condition, Heat Transfer Research, 51 (2020), 83-101.

DOI: 10.1615/heattransres.2019027139

Google Scholar

[19] M. Venkateswarlu, P. Bhaskar, O. D. Makinde, Mathematical study of nonlinear mixed convection unsteady flow in a parallel plate inclined channel in the proximity of time periodic boundary conditions: flow reversal, Journal of Nanofluids, 10 (2021), 598-607.

DOI: 10.1166/jon.2021.1802

Google Scholar

[20] M. Venkateswarlu, D. Venkata Lakshmi, Diffusion-thermo and heat source effects on the unsteady radiative MHD boundary layer slip flow past an infinite vertical porous plate, Journal of Naval Architecture and Marine Engineering, 18 (2021), 55-72, 2021.

DOI: 10.3329/jname.v18i1.33024

Google Scholar

[21] U. Himanshu, A. K. Pandey, M. Kumar, Assessment of entropy generation and heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids, Journal of Porous Media, 24 (2021), 35-50.

DOI: 10.1615/jpormedia.2021036038

Google Scholar

[22] N. Joshi, A. K, Pandey, H. Upreti, M. Kumar, Mixed convection flow of magnetic hybrid nanofluid over a bidirectional porous surface with internal heat generation and a higher- order chemical reaction, Heat Transfer, 50 (2021), 3661-3682.

DOI: 10.1002/htj.22046

Google Scholar

[23] Y. M. Chu, S. Bashir, M. Ramzan, M. Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects, Mathematical Methods in the Applied Sciences, 2022; pp.1-15.

DOI: 10.1002/mma.8234

Google Scholar

[24] M. Ramzan, N. Shahmir, H. Alotaibi, H. A. S. Ghazwani, T. Muhammad, Thermal performance comparative analysis of nanofluid flows at an oblique stagnation point considering Xue model: a solar application, Journal of Computational Design and Engineering, 9 (2022), 201-215.

DOI: 10.1093/jcde/qwab076

Google Scholar

[25] M. Bilal, I. Asghar, M. Ramzan, K. S. Nisar, A. H Abdel Aty, I. S. Yahia, H. A. S. Ghazwani, Dissipated electroosmotic EMHD hybrid nanofluid flow through the micro- channel, Scientific Reports, 12 (2022), Article ID: 4771.

DOI: 10.1038/s41598-022-08672-5

Google Scholar

[26] M. Ramzan, N. Shahmir, H. A. S. Ghazwani, K. S. Nisar, F. M. Alharbi, I. S. Yahia, Hydrodynamic and heat transfer analysis of dissimilar shaped nanoparticles-based hybrid nanofluids in a rotating frame with convective boundary condition. Scientific Reports, 12 (2022), Article ID: 436

DOI: 10.1038/s41598-021-04173-z

Google Scholar

[27] M. Y. Malik, M. Naseer, S. Nadeem, A. Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Applied Nanoscience, 4 (2013), 869-873.

DOI: 10.1007/s13204-013-0267-0

Google Scholar

[28] M. H. Aboalbashari, N. Freidoonimehr, F. Nazar, M. M. Rashidi, Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface, Advanced Powder Technology, 26 (2015), 542-552.

DOI: 10.1016/j.apt.2015.01.003

Google Scholar

[29] E. H. Aly, A. Ebaid, Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium, Journal of Molecular Liquids, 215 (2016), 625-639.

DOI: 10.1016/j.molliq.2015.12.108

Google Scholar

[30] S. Y. Ahmed, M. Y. Jabbar, H. K. Hamzah, F. H. Ali, A. K. Hussein, Mixed convection of nanofluid in a square enclosure with a hot bottom wall and a conductive half-immersed rotating circular cylinder, Heat Transfer Asian Res, 49 (2020), 4173-4203.

DOI: 10.1002/htj.21822

Google Scholar

[31] Z. Z. J. Lim, J. E. J. Li, C. T. Ng, L. Y. L. Yung, B. H. Bay, Gold nanoparticles in cancer therapy, Acta Pharmacologica Sinica, 32 (2011), 983-990.

DOI: 10.1038/aps.2011.82

Google Scholar

[32] R. Arvizo, R. Bhattacharya, P. Mukherjee, Gold nanoparticles: opportunities and challenges in nanomedicine, Expert opinion on drug delivery, 7 (2010), 753-763.

DOI: 10.1517/17425241003777010

Google Scholar

[33] J. B. Vines, J. H. Yoon, N. E. Ryu, D. J. Lim, H.Park, Gold Nanoparticles for Photothermal Cancer Therapy, Frontiers in chemistry, 7 (2019), Article 167, 1-16.

DOI: 10.3389/fchem.2019.00167

Google Scholar

[34] R. Iwatsu, J. M. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable vertical temperature gradient, International Journal of Heat and Mass Transfer, 36 (1993), 1601-1608.

DOI: 10.1016/s0017-9310(05)80069-9

Google Scholar

[35] U. Rashid, A. Iqbal, H. Liang, J. Rahman, Effects of gold nanoparticles shapes on magnetohydrodynamic flow and heat transfer in the presence of thermal radiation, Journal of Magnetics, 25 (2020), 319-329.

DOI: 10.4283/jmag.2020.25.3.319

Google Scholar

[36] M. Venkateswarlu, P. Bhaskar, Mathematical study of imposed magnetic field on radiative MHD Casson fluid flow in a micro-channel with asymmetric heating, Journal of Nanofluids, 10 (2021), 496-508.

DOI: 10.1166/jon.2021.1810

Google Scholar