[1]
T. Chinyoka, Viscoelastic effects in double-pipe single-pass counterflow heat exchangers, International Journal for Numerrical Methods in Fluids, Volume 59, 2009, Pages 677-690.
DOI: 10.1002/fld.1839
Google Scholar
[2]
T. Chinyoka, Modeling of cross-flow heat exchangers with viscoelastic fluids, Nonlinear Analysis: Real World Applications, Volume 10, Issue 6, 2009, Pages 3353-3359.
DOI: 10.1016/j.nonrwa.2008.10.069
Google Scholar
[3]
A. Bejan, Convective heat transfer, second ed., Wiley. New York, (1995).
Google Scholar
[4]
A. Bejan, Entropy generation minimization, CRC Press, New York, (1996).
Google Scholar
[5]
A. Kosarineia, Entropy generation analysis of non-newtonian fluid in rotational flow, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), Volume 9(1), 2019, 133-144.
Google Scholar
[6]
I. Kha, W.A. Khan, M. Qasim, I. Afridi, S.O. Alharbi, Thermodynamic Analysis of Entropy Generation Minimization in Thermally Dissipating Flow Over a Thin Needle Moving in a Parallel Free Stream of Two Newtonian Fluids, Entropy, Volume 21, 2019, 74.
DOI: 10.3390/e21010074
Google Scholar
[7]
T.A. Yusuf, J.A. Gbadeyan, Entropy Generation on Maxwell Fluid Flow Past an Inclined Stretching Plate with Slip and Convective Surface Conditon: Darcy-Forchheimer Model, Nano Hybrids and Composites, Volume 26, 2019, 62-83.
DOI: 10.4028/www.scientific.net/nhc.26.62
Google Scholar
[8]
K. Yang, D. Zhang, Y. Xie, G. Xie, Heat Transfer and Entropy Generation of Non-Newtonian Laminar Flow in Microchannels with Four Flow Control Structures, Entropy, Volume 18, 2016, 302.
DOI: 10.3390/e18080302
Google Scholar
[9]
O.D. Makinde, T. Chinyoka, A.S. Eegunjobi, Numerical investigation of entropy generation in an unsteady flow through a porous pipe with suction, International Journal of Exergy, Vol. 12, Issue 3, (2013) 279-297.
DOI: 10.1504/ijex.2013.054114
Google Scholar
[10]
T. Chinyoka, O.D. Makinde, Numerical Investigation of Entropy Generation in Unsteady MHD Generalized Couette Flow with Variable Electrical Conductivity, The Scientific World Journal, Vol. 2013, (2013) 364695.
DOI: 10.1155/2013/364695
Google Scholar
[11]
B.S. Yilbas, M. Yürüsoy, M. Pakdemirli, Entropy Analysis for Non-Newtonian Fluid Flow in Annular Pipe: Constant Viscosity Case, Entropy Volume 6, 2004, 304-315.
DOI: 10.3390/e6030304
Google Scholar
[12]
M. Pakdemirli, B.S. Yilbas, M. Yürüsoy, Entropy generation in non-Newtonian fluid flow in a slider bearing, Sadhana, Volume 29, 629, 2004.
DOI: 10.1007/bf02901477
Google Scholar
[13]
R.S. Reddy Gorla, L.W. Byrd, D.M. Pratt, Second law analysis for microscale flow and heat transfer, Applied Thermal Engineering, Vol. 27, (2007) 1414-1423.
DOI: 10.1016/j.applthermaleng.2006.10.027
Google Scholar
[14]
G. Ibanez, S. Cuevas, M. Lopez de Haro, Minimization of entropy generation by asymmetric convective cooling, Int. J. Heat Mass Transfer, Vol. 46, 1321-1328, 2003.
DOI: 10.1016/s0017-9310(02)00420-9
Google Scholar
[15]
U. Narusawa, The second law analysis of mixed convection in rectangular ducts, Heat and Mass Transfer, Vol. 37, (2001) 197-203.
DOI: 10.1007/s002310000173
Google Scholar
[16]
S.H. Tasnim, S. Mahmud, Entropy generation in a vertical concentric channel with temperature dependent viscosity, Int. Comm. Heat Mass Transfer, Vol. 29, No. 7, (2002) 907-918.
DOI: 10.1016/s0735-1933(02)00411-6
Google Scholar
[17]
A.Z. Sahin, Effect of variable viscosity on the entropy generation and pumping power in a laminar fluid flow through a duct subjected to constant heat flux, Heat Mass Transfer, Vol. 35, (1999) 499-506.
DOI: 10.1007/s002310050354
Google Scholar
[18]
A.O. Ajibade, B.K. Jha, A. Omame, Entropy generation under the effect of suction/injection, Applied Mathematical Modelling, Vol. 35, 4630-4646, 2011.
DOI: 10.1016/j.apm.2011.03.027
Google Scholar
[19]
T. Chinyoka, Computational dynamics of a thermally decomposable viscoelastic lubricant under shear, Transactions of ASME, J. Fluids Engineering, Vol. 130(12), 121201(7pages), 2008.
DOI: 10.1115/1.2978993
Google Scholar
[20]
T. Chinyoka, Poiseuille flow of reactive Phan-Thien-Tanner liquids in 1D channel flow, Transactions of ASME, J. Heat Transfer, Vol. 132(11), 111701(7pages), 2010.
DOI: 10.1115/1.4002094
Google Scholar
[21]
T. Chinyoka, O.D. Makinde: Computational dynamics of unsteady flow of a variable viscosity reactive fluid in a porous pipe. Mechanics Research Communications Vol. 37, 347-353, 2010.
DOI: 10.1016/j.mechrescom.2010.02.007
Google Scholar
[22]
T. Chinyoka, Suction-injection control of shear banding in non-isothermal and exothermic channel flow of Johnson-Segalman liquids, Transactions of ASME, J. Fluids Engineering, Vol. 133(7), 071205(12pages), 2011.
DOI: 10.1115/1.4004363
Google Scholar
[23]
I.E. Ireka, T. Chinyoka, Analysis of shear banding phenomena in non-isothermal flow of fluids governed by the diffusive Johnson–Segalman model, Applied Mathematical Modelling, Vol. 40, Issues 5-6, (2016) 3843-3859.
DOI: 10.1016/j.apm.2015.11.005
Google Scholar
[24]
T. Chinyoka, O.D. Makinde, Computational analysis of CO2 emission, O2 depletion and thermal decomposition in a cylindrical pipe filled with reactive materials, Communications in Nonlinear Science and Numerical Simulation, Vol. 18, Issue 9, (2013) 2448-2461.
DOI: 10.1016/j.cnsns.2013.01.018
Google Scholar
[25]
T. Chinyoka, S.P. Goqo, B.I. Olajuwon, Computational analysis of gravity driven flow of a variable viscosity viscoelastic fluid down an inclined plane, Computers & Fluids, Vol. 84, (2013) 315-326.
DOI: 10.1016/j.compfluid.2013.06.022
Google Scholar
[26]
T. Chinyoka, O.D. Makinde, On transient flow of a reactive variable viscosity third-grade fluid through a cylindrical pipe with convective cooling, Meccanica, Vol. 47, (2012) 667-685.
DOI: 10.1007/s11012-011-9476-3
Google Scholar
[27]
T. Chinyoka, Comparative Response of Newtonian and Non-Newtonian Fluids Subjected to Exothermic Reactions in Shear Flow, International journal of applied and computational mathematics, 7(3), 2021, 1-19.
DOI: 10.1007/s40819-021-01023-4
Google Scholar
[28]
R.S. Lebelo, O.D. Makinde, T. Chinyoka, Thermal decomposition analysis in a sphere of combustible materials, Advances in Mechanical Engineering, 9(2), 2017, 1-14.
DOI: 10.1177/1687814017692515
Google Scholar