[1]
K. Dissanayake, D. Kularatna-Abeywardana, A review of supercapacitors: Materials, technology, challenges, and renewable energy applications, Journal of Energy Storage 96 (2024) 112563.
DOI: 10.1016/j.est.2024.112563
Google Scholar
[2]
J. Zhang, Energy access challenge and the role of fossil fuels in meeting electricity demand: Promoting renewable energy capacity for sustainable development, Geoscience Frontiers 15 (2024) 101873.
DOI: 10.1016/j.gsf.2024.101873
Google Scholar
[3]
Y. Liu, Y. Xiao, J. Jia, H. Wang, W. Yan, M. Zhu, Perovskite solar cells: From planar designs to fiber-based innovations, Wearable Electronics 1 (2024) 150–159.
DOI: 10.1016/j.wees.2024.07.004
Google Scholar
[4]
K. Manwani, M. Lagier, A. Krammer, J. Fleury, A. Schüler, Development of novel orange colored photovoltaic modules with improved angular stability and high energy efficiency, Solar Energy Materials and Solar Cells 278 (2024) 113144.
DOI: 10.1016/j.solmat.2024.113144
Google Scholar
[5]
S. Wood, D. O'Connor, C.W. Jones, J.D. Claverley, J.C. Blakesley, C. Giusca, F.A. Castro, Transient photocurrent and photovoltage mapping for characterisation of defects in organic photovoltaics, Solar Energy Materials and Solar Cells 161 (2017) 89–95.
DOI: 10.1016/j.solmat.2016.11.029
Google Scholar
[6]
C. Li, J.M. Mogollón, A. Tukker, J. Dong, D. Von Terzi, C. Zhang, B. Steubing, Future material requirements for global sustainable offshore wind energy development, Renewable and Sustainable Energy Reviews 164 (2022) 112603.
DOI: 10.1016/j.rser.2022.112603
Google Scholar
[7]
E. Quaranta, P. Davies, Emerging and Innovative Materials for Hydropower Engineering Applications: Turbines, Bearings, Sealing, Dams and Waterways, and Ocean Power, Engineering 8 (2022) 148–158.
DOI: 10.1016/j.eng.2021.06.025
Google Scholar
[8]
F. Nath, M.N. Mahmood, E. Ofosu, A. Khanal, Enhanced geothermal systems: A critical review of recent advancements and future potential for clean energy production, Geoenergy Science and Engineering 243 (2024) 213370.
DOI: 10.1016/j.geoen.2024.213370
Google Scholar
[9]
Z.M.A. Bundhoo, R. Mohee, Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review, Ultrasonics Sonochemistry 40 (2018) 298–313.
DOI: 10.1016/j.ultsonch.2017.07.025
Google Scholar
[10]
C. Chirat, Use of vegetal biomass for biofuels and bioenergy. Competition with the production of bioproducts and materials?, Comptes Rendus Physique 18 (2017) 462–468.
DOI: 10.1016/j.crhy.2017.10.002
Google Scholar
[11]
M. Absa, F. Latief, S. Suasmoro, Multistep sintering: its role on density, phase homogeneity, microstructure and electrical properties of (1-x-y)BaTiO3- xPbZrO3-yNaVO3 System, Journal of Physics (2020).
DOI: 10.1088/1742-6596/1825/1/012063
Google Scholar
[12]
T. Gholam, L.R. Zheng, J.O. Wang, H.J. Qian, R. Wu, H.-Q. Wang, Synchrotron X-ray Absorption Spectroscopy Study of Local Structure in Al-Doped BiFeO3 Powders, Nanoscale Res Lett 14 (2019) 137.
DOI: 10.1186/s11671-019-2965-3
Google Scholar
[13]
S. Banerjee, S. Bairagi, S. Wazed Ali, A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion, Ceramics International 47 (2021) 16402–16421.
DOI: 10.1016/j.ceramint.2021.03.054
Google Scholar
[14]
J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application, Journal of the European Ceramic Society 35 (2015) 1659–1681.
DOI: 10.1016/j.jeurceramsoc.2014.12.013
Google Scholar
[15]
W. Wang, X.-G. Tang, Y.-P. Jiang, Q.-X. Liu, W.-H. Li, X.-B. Guo, Z.-H. Tang, Phase evolution, dielectric, ferroelectric, and piezoelectric properties of Bi(Mg0.5Hf0.5)O3–modified BiFeO3–BaTiO3, Materials Today Chemistry 24 (2022) 100825.
DOI: 10.1016/j.mtchem.2022.100825
Google Scholar
[16]
M.H. Bagheri, A.A. Khan, S. Shahzadi, M.M. Rana, M.S. Hasan, D. Ban, Advancements and challenges in molecular/hybrid perovskites for piezoelectric nanogenerator application: A comprehensive review, Nano Energy 120 (2024) 109101.
DOI: 10.1016/j.nanoen.2023.109101
Google Scholar
[17]
S. Divya, T.H. Oh, M. Bodaghi, 1D nanomaterial based piezoelectric nanogenerators for self-powered biocompatible energy harvesters, European Polymer Journal 197 (2023) 112363.
DOI: 10.1016/j.eurpolymj.2023.112363
Google Scholar
[18]
A. Biswas, S. Garain, K. Maity, K. Henkel, D. Schmeißer, D. Mandal, Influence of in situ synthesized bismuth oxide nanostructures in self‐poled PVDF‐based nanogenerator for mechanical energy harvesting application, Polymer Composites 40 (2019).
DOI: 10.1002/pc.24628
Google Scholar
[19]
Z. Pourkarim, H. Esfahani, Enhancement of acoustic properties of carbon fibrous membrane (CFM) by in-situ crystallization of PZT nanogenerators (PENGs) inside the fibers for a low-frequency acoustic energy harvesting, Ceramics International 50 (2024) 25955–25968.
DOI: 10.1016/j.ceramint.2024.04.338
Google Scholar
[20]
A. Zulfi, M.M. Munir, D.A. Hapidin, A. Rajak, D. Edikresnha, F. Iskandar, K. Khairurrijal, Air filtration media from electrospun waste high-impact polystyrene fiber membrane, Mater. Res. Express 5 (2018) 035049.
DOI: 10.1088/2053-1591/aab6ef
Google Scholar
[21]
W. Fu, W. Xu, K. Yin, X. Meng, Y. Wen, L. Peng, M. Tang, L. Sun, Y. Sun, Y. Dai, Flexible-in-rigid polycrystalline titanium nanofibers: a toughening strategy from a macro-scale to a molecular-scale, Mater. Horiz. 10 (2023) 65–74.
DOI: 10.1039/D2MH01255C
Google Scholar
[22]
V. Kundrat, V. Vykoukal, Z. Moravec, L. Simonikova, K. Novotny, J. Pinkas, Preparation of polycrystalline tungsten nanofibers by needleless electrospinning, Journal of Alloys and Compounds 900 (2022) 163542.
DOI: 10.1016/j.jallcom.2021.163542
Google Scholar
[23]
G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma, M. Dudley, Fabrication and Characterization of Polycrystalline WO 3 Nanofibers and Their Application for Ammonia Sensing, J. Phys. Chem. B 110 (2006) 23777–23782.
DOI: 10.1021/jp0635819
Google Scholar
[24]
D. Carranza-Celis, A. Cardona-Rodríguez, J. Narváez, O. Moscoso-Londono, D. Muraca, M. Knobel, N. Ornelas-Soto, A. Reiber, J.G. Ramírez, Control of Multiferroic properties in BiFeO3 nanoparticles, Sci Rep 9 (2019) 3182.
DOI: 10.1038/s41598-019-39517-3
Google Scholar
[25]
T. Durga Rao, S. Asthana, Evidence of improved ferroelectric phase stabilization in Nd and Sc co-substituted BiFeO3, Journal of Applied Physics 116 (2014) 164102.
DOI: 10.1063/1.4898805
Google Scholar
[26]
S. Shankar, I. Maurya, A. Raj, S. Singh, O.P. Thakur, M. Jayasimhadri, Dielectric and tunable ferroelectric properties in BiFeO3–BiCoO3–BaTiO3 ternary compound, Appl. Phys. A 126 (2020) 686.
DOI: 10.1007/s00339-020-03872-0
Google Scholar
[27]
R. Dallaev, T. Pisarenko, D. Sobola, F. Orudzhev, S. Ramazanov, T. Trčka, Brief Review of PVDF Properties and Applications Potential, Polymers 14 (2022) 4793.
DOI: 10.3390/polym14224793
Google Scholar
[28]
F. Orudzhev, D. Sobola, S. Ramazanov, K. Částková, N. Papež, D.A. Selimov, M. Abdurakhmanov, A. Shuaibov, A. Rabadanova, R. Gulakhmedov, V. Holcman, Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane, Polymers 15 (2023) 246.
DOI: 10.3390/polym15010246
Google Scholar
[29]
F. Latief, M. Absa, M. Andansari, M.A. Baqiya, S. Suasmoro, Synthesis of nano-size BaTiO3 –BiFeO3 system with low melting temperature KVO3 addition, Ferroelectrics 599 (2022) 237–248.
DOI: 10.1080/00150193.2022.2113655
Google Scholar
[30]
D.E. Mazouzi, F. Djani, A. Soukeur, W. Bouchal, A. Manseri, K. Derkaoui, A. Martínez-Arias, A. Ksouri, F. Şen, M.M. Kaci, Auto-combustion designed BiFeO3/Bi2O3 photocatalyst for improved photodegradation of nitrobenzene under visible light and sunlight irradiation, Surfaces and Interfaces 44 (2024) 103581.
DOI: 10.1016/j.surfin.2023.103581
Google Scholar
[31]
X. Hu, X. Chen, M. Giagnorio, C. Wu, Y. Luo, C. Hélix-Nielsen, P. Yu, W. Zhang, Beaded electrospun polyvinylidene fluoride (PVDF) membranes for membrane distillation (MD), Journal of Membrane Science 661 (2022) 120850.
DOI: 10.1016/j.memsci.2022.120850
Google Scholar
[32]
A. Luraghi, F. Peri, L. Moroni, Electrospinning for drug delivery applications: A review, Journal of Controlled Release 334 (2021) 463–484.
DOI: 10.1016/j.jconrel.2021.03.033
Google Scholar
[33]
H. Zhang, X. Zhang, C. Qiu, P. Jia, F. An, L. Zhou, L. Zhu, D. Zhang, Polyaniline/ZnO heterostructure-based ammonia sensor self-powered by electrospinning of PTFE-PVDF/MXene piezo-tribo hybrid nanogenerator, Chemical Engineering Journal 496 (2024) 154226.
DOI: 10.1016/j.cej.2024.154226
Google Scholar
[34]
A.B. Rashid, M. Haque, S.M.M. Islam, K.M.R. Uddin Labib, Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications, Heliyon 10 (2024) e24692.
DOI: 10.1016/j.heliyon.2024.e24692
Google Scholar
[35]
R. Gayatri, A.N.S. Fizal, E. Yuliwati, M.S. Hossain, J. Jaafar, M. Zulkifli, W. Taweepreda, A.N. Ahmad Yahaya, Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection, Nanomaterials 13 (2023) 1023.
DOI: 10.3390/nano13061023
Google Scholar
[36]
C. Salas, Solution electrospinning of nanofibers, in: Electrospun Nanofibers, Elsevier, 2017: p.73–108.
DOI: 10.1016/B978-0-08-100907-9.00004-0
Google Scholar
[37]
S. Bharathkumar, M. Sakar, Versatility of electrospinning on the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic, photocatalytic activities, Phys. Chem. Chem. Phys., (2015).
DOI: 10.1039/C5CP01640A
Google Scholar
[38]
J. Zhang, Z. Jian, M. Jiang, B. Peng, Y. Zhang, Z. Wu, J. Zheng, Influence of Dispersed TiO2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO2 Composite Membranes, Membranes 12 (2022) 1118.
DOI: 10.3390/membranes12111118
Google Scholar
[39]
A. Ichangi, K. Lê, A. Queraltó, M. Grosch, R. Weißing, F. Ünlü, A.K. Chijioke, A. Verma, T. Fischer, R. Surmenev, S. Mathur, Electrospun BiFeO3 Nanofibers for Vibrational Energy Harvesting Application, Adv Eng Mater 24 (2022) 2101394.
DOI: 10.1002/adem.202101394
Google Scholar
[40]
C. Casut, I. Malaescu, C.N. Marin, M. Miclau, The Effect of Bi2O3 and Fe2O3 Impurity Phases in BiFeO3 Perovskite Materials on Some Electrical Properties in the Low-Frequency Field, Materials 15 (2022) 4764.
DOI: 10.3390/ma15144764
Google Scholar
[41]
U. Nuraini, S. Suasmoro, Crystal structure and phase transformation of BiFeO3 multiferroics on the temperature variation, J. Phys.: Conf. Ser. 817 (2017) 012059.
DOI: 10.1088/1742-6596/817/1/012059
Google Scholar
[42]
X.H. Zheng, P.J. Chen, N. Ma, Z.H. Ma, D.P. Tang, Synthesis and dielectric properties of BiFeO3 derived from molten salt method, J Mater Sci: Mater Electron 23 (2012) 990–994.
DOI: 10.1007/s10854-011-0533-4
Google Scholar
[43]
J. Li, Q. Meng, W. Li, Z. Zhang, Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride), J of Applied Polymer Sci 122 (2011) 1659–1668.
DOI: 10.1002/app.34020
Google Scholar
[44]
W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia, Z. Xu, Electric energy storage properties of poly(vinylidene fluoride), Applied Physics Letters 96 (2010) 192905.
DOI: 10.1063/1.3428656
Google Scholar
[45]
B.H. Arrosyid, A. Zulfi, S. Nur'aini, S. Hartati, A.F. Rafryanto, A. Noviyanto, D.A. Hapidin, D. Feriyanto, K. Khairurrijal, High-Efficiency Water Filtration by Electrospun Expanded Polystyrene Waste Nanofibers, ACS Omega 8 (2023) 23664–23672.
DOI: 10.1021/acsomega.3c01718
Google Scholar
[46]
R. Amalia, A. Noviyanto, L.A. Rahma, Merita, A. Labanni, M. Fahroji, S. Purwajanti, D.A. Hapidin, A. Zulfi, PVC waste-derived nanofiber: Simple fabrication with high potential performance for PM removal in air filtration, Sustainable Materials and Technologies 40 (2024) e00928.
DOI: 10.1016/j.susmat.2024.e00928
Google Scholar
[47]
F.H. Kusumah, S. Hartati, A. Noviyanto, A. Zulfi, N.T. Rochman, Optimasi Serat Selulosa Asetat/Gelatin/Ekstrak Bajakah (Spatholobus littoralis Hassk) menggunakan Pemintalan Elektrik, 8 (n.d.).
Google Scholar
[48]
S. Chauhan, M. Arora, P.C. Sati, S. Chhoker, S.C. Katyal, M. Kumar, Structural, vibrational, optical, magnetic and dielectric properties of Bi 1−x Ba x FeO 3 nanoparticles, Ceramics International 39 (2013) 6399–6405.
DOI: 10.1016/j.ceramint.2013.01.066
Google Scholar
[49]
Y. Wu, H. Zhang, Y. Xu, Z. Tang, Z. Li, Ferroelectric BiFeO 3 modified PVDF-based electrolytes for high-performance lithium metal batteries, J. Mater. Chem. A 12 (2024) 20403–20413.
DOI: 10.1039/D4TA03225J
Google Scholar
[50]
G. Magdy, A.H. Hassanin, I. Kandas, N. Shehata, PVDF nanostructures characterizations and techniques for enhanced piezoelectric response: A review, Materials Chemistry and Physics 325 (2024) 129760.
DOI: 10.1016/j.matchemphys.2024.129760
Google Scholar
[51]
G. Chang, X. Pan, Y. Hao, W. Du, S. Wang, Y. Zhou, J. Yang, Y. He, PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure, RSC Adv. 14 (2024) 11775–11783.
DOI: 10.1039/D3RA08713A
Google Scholar
[52]
M. Koç, Effect of multilayer fabrication of PVDF/PZT fibers on output performance in piezoelectric nanogenerator (PEN), J Polym Res 31 (2024) 160.
DOI: 10.1007/s10965-024-04004-5
Google Scholar
[53]
E. Stojchevska, P. Makreski, M. Zanoni, L. Gasperini, G. Selleri, D. Fabiani, C. Gualandi, A. Bužarovska, Piezoelectric PVDF‐TrFE nanocomposite mats filled with BaTiO3 nanofibers: The effect of poling conditions, Polymers for Advanced Techs 35 (2024) e6333.
DOI: 10.1002/pat.6333
Google Scholar