Synthesis, Structural, and Vibrational Properties of PVDF/BiFeO3 Nanofibers Using Electrospinning Technique

Article Preview

Abstract:

The composite nanofibers of PVDF/BiFeO3 (PVDF/BF) signify a notable advancement in the domain of piezoelectric nanogenerators (PENGs), providing a high surface area alongside enhanced physicochemical properties for energy harvesting and storage applications. These nanofibers were synthesized through the electrospinning technique, which enables the creation of porous fibers by the dissolution of polymers in volatile solvents. This study investigates the crystalline and chemical structures of PVDF/BF nanofibers with modified formulations. X-ray diffraction (XRD) analysis has confirmed the presence of a rhombohedral (R3c) phase, characteristic of both BiFeO3 and the PVDF phase. The measured fiber diameters for pure PVDF and PVDF/BF composites varied from approximately 400 nm to 950 nm. Fourier-transform infrared (FTIR) spectroscopy has identified absorption bands at 410–555 cm-1, which correspond to the functional groups of BiFeO3, as well as at 612–1430 cm-1 for PVDF. Moreover, Raman spectroscopy has validated molecular vibrational shifts for BiFeO3 (4A1+9E) and PVDF within the range of 2973–2977 cm-1. The incorporation of BiFeO3 within the PVDF/BF nanofibers enhances the formation of the electroactive β-phase, thereby potentially improving their electrical properties.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] K. Dissanayake, D. Kularatna-Abeywardana, A review of supercapacitors: Materials, technology, challenges, and renewable energy applications, Journal of Energy Storage 96 (2024) 112563.

DOI: 10.1016/j.est.2024.112563

Google Scholar

[2] J. Zhang, Energy access challenge and the role of fossil fuels in meeting electricity demand: Promoting renewable energy capacity for sustainable development, Geoscience Frontiers 15 (2024) 101873.

DOI: 10.1016/j.gsf.2024.101873

Google Scholar

[3] Y. Liu, Y. Xiao, J. Jia, H. Wang, W. Yan, M. Zhu, Perovskite solar cells: From planar designs to fiber-based innovations, Wearable Electronics 1 (2024) 150–159.

DOI: 10.1016/j.wees.2024.07.004

Google Scholar

[4] K. Manwani, M. Lagier, A. Krammer, J. Fleury, A. Schüler, Development of novel orange colored photovoltaic modules with improved angular stability and high energy efficiency, Solar Energy Materials and Solar Cells 278 (2024) 113144.

DOI: 10.1016/j.solmat.2024.113144

Google Scholar

[5] S. Wood, D. O'Connor, C.W. Jones, J.D. Claverley, J.C. Blakesley, C. Giusca, F.A. Castro, Transient photocurrent and photovoltage mapping for characterisation of defects in organic photovoltaics, Solar Energy Materials and Solar Cells 161 (2017) 89–95.

DOI: 10.1016/j.solmat.2016.11.029

Google Scholar

[6] C. Li, J.M. Mogollón, A. Tukker, J. Dong, D. Von Terzi, C. Zhang, B. Steubing, Future material requirements for global sustainable offshore wind energy development, Renewable and Sustainable Energy Reviews 164 (2022) 112603.

DOI: 10.1016/j.rser.2022.112603

Google Scholar

[7] E. Quaranta, P. Davies, Emerging and Innovative Materials for Hydropower Engineering Applications: Turbines, Bearings, Sealing, Dams and Waterways, and Ocean Power, Engineering 8 (2022) 148–158.

DOI: 10.1016/j.eng.2021.06.025

Google Scholar

[8] F. Nath, M.N. Mahmood, E. Ofosu, A. Khanal, Enhanced geothermal systems: A critical review of recent advancements and future potential for clean energy production, Geoenergy Science and Engineering 243 (2024) 213370.

DOI: 10.1016/j.geoen.2024.213370

Google Scholar

[9] Z.M.A. Bundhoo, R. Mohee, Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review, Ultrasonics Sonochemistry 40 (2018) 298–313.

DOI: 10.1016/j.ultsonch.2017.07.025

Google Scholar

[10] C. Chirat, Use of vegetal biomass for biofuels and bioenergy. Competition with the production of bioproducts and materials?, Comptes Rendus Physique 18 (2017) 462–468.

DOI: 10.1016/j.crhy.2017.10.002

Google Scholar

[11] M. Absa, F. Latief, S. Suasmoro, Multistep sintering: its role on density, phase homogeneity, microstructure and electrical properties of (1-x-y)BaTiO3- xPbZrO3-yNaVO3 System, Journal of Physics (2020).

DOI: 10.1088/1742-6596/1825/1/012063

Google Scholar

[12] T. Gholam, L.R. Zheng, J.O. Wang, H.J. Qian, R. Wu, H.-Q. Wang, Synchrotron X-ray Absorption Spectroscopy Study of Local Structure in Al-Doped BiFeO3 Powders, Nanoscale Res Lett 14 (2019) 137.

DOI: 10.1186/s11671-019-2965-3

Google Scholar

[13] S. Banerjee, S. Bairagi, S. Wazed Ali, A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion, Ceramics International 47 (2021) 16402–16421.

DOI: 10.1016/j.ceramint.2021.03.054

Google Scholar

[14] J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application, Journal of the European Ceramic Society 35 (2015) 1659–1681.

DOI: 10.1016/j.jeurceramsoc.2014.12.013

Google Scholar

[15] W. Wang, X.-G. Tang, Y.-P. Jiang, Q.-X. Liu, W.-H. Li, X.-B. Guo, Z.-H. Tang, Phase evolution, dielectric, ferroelectric, and piezoelectric properties of Bi(Mg0.5Hf0.5)O3–modified BiFeO3–BaTiO3, Materials Today Chemistry 24 (2022) 100825.

DOI: 10.1016/j.mtchem.2022.100825

Google Scholar

[16] M.H. Bagheri, A.A. Khan, S. Shahzadi, M.M. Rana, M.S. Hasan, D. Ban, Advancements and challenges in molecular/hybrid perovskites for piezoelectric nanogenerator application: A comprehensive review, Nano Energy 120 (2024) 109101.

DOI: 10.1016/j.nanoen.2023.109101

Google Scholar

[17] S. Divya, T.H. Oh, M. Bodaghi, 1D nanomaterial based piezoelectric nanogenerators for self-powered biocompatible energy harvesters, European Polymer Journal 197 (2023) 112363.

DOI: 10.1016/j.eurpolymj.2023.112363

Google Scholar

[18] A. Biswas, S. Garain, K. Maity, K. Henkel, D. Schmeißer, D. Mandal, Influence of in situ synthesized bismuth oxide nanostructures in self‐poled PVDF‐based nanogenerator for mechanical energy harvesting application, Polymer Composites 40 (2019).

DOI: 10.1002/pc.24628

Google Scholar

[19] Z. Pourkarim, H. Esfahani, Enhancement of acoustic properties of carbon fibrous membrane (CFM) by in-situ crystallization of PZT nanogenerators (PENGs) inside the fibers for a low-frequency acoustic energy harvesting, Ceramics International 50 (2024) 25955–25968.

DOI: 10.1016/j.ceramint.2024.04.338

Google Scholar

[20] A. Zulfi, M.M. Munir, D.A. Hapidin, A. Rajak, D. Edikresnha, F. Iskandar, K. Khairurrijal, Air filtration media from electrospun waste high-impact polystyrene fiber membrane, Mater. Res. Express 5 (2018) 035049.

DOI: 10.1088/2053-1591/aab6ef

Google Scholar

[21] W. Fu, W. Xu, K. Yin, X. Meng, Y. Wen, L. Peng, M. Tang, L. Sun, Y. Sun, Y. Dai, Flexible-in-rigid polycrystalline titanium nanofibers: a toughening strategy from a macro-scale to a molecular-scale, Mater. Horiz. 10 (2023) 65–74.

DOI: 10.1039/D2MH01255C

Google Scholar

[22] V. Kundrat, V. Vykoukal, Z. Moravec, L. Simonikova, K. Novotny, J. Pinkas, Preparation of polycrystalline tungsten nanofibers by needleless electrospinning, Journal of Alloys and Compounds 900 (2022) 163542.

DOI: 10.1016/j.jallcom.2021.163542

Google Scholar

[23] G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma, M. Dudley, Fabrication and Characterization of Polycrystalline WO 3 Nanofibers and Their Application for Ammonia Sensing, J. Phys. Chem. B 110 (2006) 23777–23782.

DOI: 10.1021/jp0635819

Google Scholar

[24] D. Carranza-Celis, A. Cardona-Rodríguez, J. Narváez, O. Moscoso-Londono, D. Muraca, M. Knobel, N. Ornelas-Soto, A. Reiber, J.G. Ramírez, Control of Multiferroic properties in BiFeO3 nanoparticles, Sci Rep 9 (2019) 3182.

DOI: 10.1038/s41598-019-39517-3

Google Scholar

[25] T. Durga Rao, S. Asthana, Evidence of improved ferroelectric phase stabilization in Nd and Sc co-substituted BiFeO3, Journal of Applied Physics 116 (2014) 164102.

DOI: 10.1063/1.4898805

Google Scholar

[26] S. Shankar, I. Maurya, A. Raj, S. Singh, O.P. Thakur, M. Jayasimhadri, Dielectric and tunable ferroelectric properties in BiFeO3–BiCoO3–BaTiO3 ternary compound, Appl. Phys. A 126 (2020) 686.

DOI: 10.1007/s00339-020-03872-0

Google Scholar

[27] R. Dallaev, T. Pisarenko, D. Sobola, F. Orudzhev, S. Ramazanov, T. Trčka, Brief Review of PVDF Properties and Applications Potential, Polymers 14 (2022) 4793.

DOI: 10.3390/polym14224793

Google Scholar

[28] F. Orudzhev, D. Sobola, S. Ramazanov, K. Částková, N. Papež, D.A. Selimov, M. Abdurakhmanov, A. Shuaibov, A. Rabadanova, R. Gulakhmedov, V. Holcman, Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane, Polymers 15 (2023) 246.

DOI: 10.3390/polym15010246

Google Scholar

[29] F. Latief, M. Absa, M. Andansari, M.A. Baqiya, S. Suasmoro, Synthesis of nano-size BaTiO3 –BiFeO3 system with low melting temperature KVO3 addition, Ferroelectrics 599 (2022) 237–248.

DOI: 10.1080/00150193.2022.2113655

Google Scholar

[30] D.E. Mazouzi, F. Djani, A. Soukeur, W. Bouchal, A. Manseri, K. Derkaoui, A. Martínez-Arias, A. Ksouri, F. Şen, M.M. Kaci, Auto-combustion designed BiFeO3/Bi2O3 photocatalyst for improved photodegradation of nitrobenzene under visible light and sunlight irradiation, Surfaces and Interfaces 44 (2024) 103581.

DOI: 10.1016/j.surfin.2023.103581

Google Scholar

[31] X. Hu, X. Chen, M. Giagnorio, C. Wu, Y. Luo, C. Hélix-Nielsen, P. Yu, W. Zhang, Beaded electrospun polyvinylidene fluoride (PVDF) membranes for membrane distillation (MD), Journal of Membrane Science 661 (2022) 120850.

DOI: 10.1016/j.memsci.2022.120850

Google Scholar

[32] A. Luraghi, F. Peri, L. Moroni, Electrospinning for drug delivery applications: A review, Journal of Controlled Release 334 (2021) 463–484.

DOI: 10.1016/j.jconrel.2021.03.033

Google Scholar

[33] H. Zhang, X. Zhang, C. Qiu, P. Jia, F. An, L. Zhou, L. Zhu, D. Zhang, Polyaniline/ZnO heterostructure-based ammonia sensor self-powered by electrospinning of PTFE-PVDF/MXene piezo-tribo hybrid nanogenerator, Chemical Engineering Journal 496 (2024) 154226.

DOI: 10.1016/j.cej.2024.154226

Google Scholar

[34] A.B. Rashid, M. Haque, S.M.M. Islam, K.M.R. Uddin Labib, Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications, Heliyon 10 (2024) e24692.

DOI: 10.1016/j.heliyon.2024.e24692

Google Scholar

[35] R. Gayatri, A.N.S. Fizal, E. Yuliwati, M.S. Hossain, J. Jaafar, M. Zulkifli, W. Taweepreda, A.N. Ahmad Yahaya, Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection, Nanomaterials 13 (2023) 1023.

DOI: 10.3390/nano13061023

Google Scholar

[36] C. Salas, Solution electrospinning of nanofibers, in: Electrospun Nanofibers, Elsevier, 2017: p.73–108.

DOI: 10.1016/B978-0-08-100907-9.00004-0

Google Scholar

[37] S. Bharathkumar, M. Sakar, Versatility of electrospinning on the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic, photocatalytic activities, Phys. Chem. Chem. Phys., (2015).

DOI: 10.1039/C5CP01640A

Google Scholar

[38] J. Zhang, Z. Jian, M. Jiang, B. Peng, Y. Zhang, Z. Wu, J. Zheng, Influence of Dispersed TiO2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO2 Composite Membranes, Membranes 12 (2022) 1118.

DOI: 10.3390/membranes12111118

Google Scholar

[39] A. Ichangi, K. Lê, A. Queraltó, M. Grosch, R. Weißing, F. Ünlü, A.K. Chijioke, A. Verma, T. Fischer, R. Surmenev, S. Mathur, Electrospun BiFeO3 Nanofibers for Vibrational Energy Harvesting Application, Adv Eng Mater 24 (2022) 2101394.

DOI: 10.1002/adem.202101394

Google Scholar

[40] C. Casut, I. Malaescu, C.N. Marin, M. Miclau, The Effect of Bi2O3 and Fe2O3 Impurity Phases in BiFeO3 Perovskite Materials on Some Electrical Properties in the Low-Frequency Field, Materials 15 (2022) 4764.

DOI: 10.3390/ma15144764

Google Scholar

[41] U. Nuraini, S. Suasmoro, Crystal structure and phase transformation of BiFeO3 multiferroics on the temperature variation, J. Phys.: Conf. Ser. 817 (2017) 012059.

DOI: 10.1088/1742-6596/817/1/012059

Google Scholar

[42] X.H. Zheng, P.J. Chen, N. Ma, Z.H. Ma, D.P. Tang, Synthesis and dielectric properties of BiFeO3 derived from molten salt method, J Mater Sci: Mater Electron 23 (2012) 990–994.

DOI: 10.1007/s10854-011-0533-4

Google Scholar

[43] J. Li, Q. Meng, W. Li, Z. Zhang, Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride), J of Applied Polymer Sci 122 (2011) 1659–1668.

DOI: 10.1002/app.34020

Google Scholar

[44] W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia, Z. Xu, Electric energy storage properties of poly(vinylidene fluoride), Applied Physics Letters 96 (2010) 192905.

DOI: 10.1063/1.3428656

Google Scholar

[45] B.H. Arrosyid, A. Zulfi, S. Nur'aini, S. Hartati, A.F. Rafryanto, A. Noviyanto, D.A. Hapidin, D. Feriyanto, K. Khairurrijal, High-Efficiency Water Filtration by Electrospun Expanded Polystyrene Waste Nanofibers, ACS Omega 8 (2023) 23664–23672.

DOI: 10.1021/acsomega.3c01718

Google Scholar

[46] R. Amalia, A. Noviyanto, L.A. Rahma, Merita, A. Labanni, M. Fahroji, S. Purwajanti, D.A. Hapidin, A. Zulfi, PVC waste-derived nanofiber: Simple fabrication with high potential performance for PM removal in air filtration, Sustainable Materials and Technologies 40 (2024) e00928.

DOI: 10.1016/j.susmat.2024.e00928

Google Scholar

[47] F.H. Kusumah, S. Hartati, A. Noviyanto, A. Zulfi, N.T. Rochman, Optimasi Serat Selulosa Asetat/Gelatin/Ekstrak Bajakah (Spatholobus littoralis Hassk) menggunakan Pemintalan Elektrik, 8 (n.d.).

Google Scholar

[48] S. Chauhan, M. Arora, P.C. Sati, S. Chhoker, S.C. Katyal, M. Kumar, Structural, vibrational, optical, magnetic and dielectric properties of Bi 1−x Ba x FeO 3 nanoparticles, Ceramics International 39 (2013) 6399–6405.

DOI: 10.1016/j.ceramint.2013.01.066

Google Scholar

[49] Y. Wu, H. Zhang, Y. Xu, Z. Tang, Z. Li, Ferroelectric BiFeO 3 modified PVDF-based electrolytes for high-performance lithium metal batteries, J. Mater. Chem. A 12 (2024) 20403–20413.

DOI: 10.1039/D4TA03225J

Google Scholar

[50] G. Magdy, A.H. Hassanin, I. Kandas, N. Shehata, PVDF nanostructures characterizations and techniques for enhanced piezoelectric response: A review, Materials Chemistry and Physics 325 (2024) 129760.

DOI: 10.1016/j.matchemphys.2024.129760

Google Scholar

[51] G. Chang, X. Pan, Y. Hao, W. Du, S. Wang, Y. Zhou, J. Yang, Y. He, PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure, RSC Adv. 14 (2024) 11775–11783.

DOI: 10.1039/D3RA08713A

Google Scholar

[52] M. Koç, Effect of multilayer fabrication of PVDF/PZT fibers on output performance in piezoelectric nanogenerator (PEN), J Polym Res 31 (2024) 160.

DOI: 10.1007/s10965-024-04004-5

Google Scholar

[53] E. Stojchevska, P. Makreski, M. Zanoni, L. Gasperini, G. Selleri, D. Fabiani, C. Gualandi, A. Bužarovska, Piezoelectric PVDF‐TrFE nanocomposite mats filled with BaTiO3 nanofibers: The effect of poling conditions, Polymers for Advanced Techs 35 (2024) e6333.

DOI: 10.1002/pat.6333

Google Scholar