Citric Acid-Treated Polyethylene-Calcium Carbonate Composites with Tunable Photoluminescence, Porosity, and Adsorption Properties for Oil Contaminants Remediation

Article Preview

Abstract:

Oil contamination from petroleum hydrocarbons and other sources poses significant environmental and health risks due to its persistence and toxicity. This study developed polyethylene-calcium carbonate (PE-CC) composites with tailored structural and surface properties to enhance oil adsorption. The composites were fabricated through melt blending (PE:CC = 40:60), with the calcium carbonate (CC) filler first modified using oleic acid (OA) (0, 0.5, and 1.5 wt.%) to improve hydrophobicity and dispersion, followed by citric acid (1 M) treatment of the composites to induce porosity and optimize oil adsorption. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed successful surface modification of CC, as evidenced by reduced diffraction peak intensities and the emergence of new functional groups at 2970 cm-1 and 1395.12 cm-1. Citric acid treatment led to partial CC dissolution, resulting in up to 8.96 % weight loss, as confirmed by XRD and energy-dispersive spectroscopy (EDS). Scanning electron microscopy (SEM) revealed increased porosity (up to 40 μm) and enhanced surface roughness, particularly in TE 3. Wettability analysis demonstrated a maximum contact angle of 160.80° following OA modification of CC, while oil adsorption tests of the PE-CC composites showed substantial improvements in oil uptake, with vegetable oil adsorption increasing from 5.21 % (NE) to 18.75 % (TE 3), and hexane and diesel reaching 18.4 % and 12.5 % respectively, in TE 3. Photoluminescence analysis revealed wavelength-dependent blue-violet emissions with broad peaks at 405 and 570 nm when excited at 255 and 405 nm, respectively, indicating potential optical applications. These findings show the potential of OA and citric acid modifications in enhancing the surface properties, photoluminescence, and adsorption efficiency of PE-CC composites, positioning them as promising candidates for oil remediation and multifunctional industrial applications.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] S. Garg, Z.Z. Chowdhury, A.N.M. Faisal, N.P. Rumjit, and P. Thomas, Impact of Industrial Wastewater on Environment and Human Health, 2022, pp.197-209.

Google Scholar

[2] N. Singh, T. Poonia, S.S. Siwal, A.L. Srivastav, H.K. Sharma, and S.K. Mittal, Challenges of water contamination in urban areas, 2022, pp.173-202.

Google Scholar

[3] J. Kanungo, T. Sahoo, M. Bal, and I.D. Behera, Performance of Bioremediation Strategy in Waste Lubricating Oil Pollutants: A Review, Geomicrobiol. J. 41 (2024) 360-373.

DOI: 10.1080/01490451.2023.2245395

Google Scholar

[4] A.M. Hassan, E.W. Al-Shalabi, and M.A. Ayoub, Updated Perceptions on Polymer-Based Enhanced Oil Recovery toward High-Temperature High-Salinity Tolerance for Successful Field Applications in Carbonate Reservoirs, Polymers 14 (2022) 2001-2001.

DOI: 10.3390/polym14102001

Google Scholar

[5] S.R. Benin, S. Kannan, R.J. Bright, and A. Jacob Moses, A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres, Mater. Today: Proc. 33 (2020) 798-805.

DOI: 10.1016/j.matpr.2020.06.259

Google Scholar

[6] M. Ramesh, L.N. Rajeshkumar, N. Srinivasan, D.V. Kumar, and D. Balaji, Influence of filler material on properties of fiber-reinforced polymer composites: A review, e-Polymers 22 (2022) 898-916.

DOI: 10.1515/epoly-2022-0080

Google Scholar

[7] J.-W. Zha, F. Wang, and B. Wan, Polymer composites with high thermal conductivity: Theory, simulation, structure and interfacial regulation, Prog. Mater Sci. 148 (2025) 101362-101362.

DOI: 10.1016/j.pmatsci.2024.101362

Google Scholar

[8] S. Kartik Shubham, R. Purohit, P.S. Yadav, and R.S. Rana, Study of nano-fillers embedded in polymer matrix composites to enhance its properties – A review, Mater. Today: Proc. 26 (2020) 3024-3029.

DOI: 10.1016/j.matpr.2020.02.629

Google Scholar

[9] R.O. Ogunleye, and S. Rusnakova, A Review of Prestressed Fibre-Reinforced Polymer Matrix Composites, Polymers 14 (2021) 60-60.

DOI: 10.3390/polym14010060

Google Scholar

[10] A. Shojaei, and S.S. Khasraghi, Self-healing and self-sensing smart polymer composites, Elsevier, 2021, pp.307-357.

DOI: 10.1016/b978-0-12-820512-9.00015-0

Google Scholar

[11] R. Dweiri, Processing and Characterization of Surface Treated Chicken Eggshell and Calcium Carbonate Particles Filled High-Density Polyethylene Composites, Mater. Res. 24 (2021).

DOI: 10.1590/1980-5373-mr-2021-0078

Google Scholar

[12] F. Liendo, M. Arduino, F.A. Deorsola, and S. Bensaid, Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review, Powder Technol. 398 (2022) 117050-117050.

DOI: 10.1016/j.powtec.2021.117050

Google Scholar

[13] N.M. Nurazzi, M.N.F. Norrrahim, M.H. Mulla, S.H. Kamarudin, M.S.A. Rani, A.I. Rushdan, and A.M. Kuzmin, Mechanical performance of seashell-reinforced polymer composites for structural applications, Elsevier, 2024, pp.243-257.

DOI: 10.1016/b978-0-443-22414-0.00013-2

Google Scholar

[14] J. Qiu, J.W. Lyu, J.L. Yang, K.B. Cui, H.Z. Liu, G.F. Wang, and X. Liu, Review on Preparation, Modification and Application of Nano‐Calcium Carbonate, Part. Part. Syst. Charact. 41 (2024) 1-12.

DOI: 10.1002/ppsc.202400097

Google Scholar

[15] S.C.S. Teixeira, M. M. Moreira, A.P. Lima, L.S. Santos, B.M. da Rocha, E.S. de Lima, R.A.A.F. da Costa, A.L.N. da Silva, M.C.G. Rocha, and F.M.B. Coutinho, Composites of high density polyethylene and different grades of calcium carbonate: Mechanical, rheological, thermal, and morphological properties, J. Appl. Polym. Sci. 101 (2006) 2559-2564.

DOI: 10.1002/app.23920

Google Scholar

[16] H. Xu, L. Yang, P. Wang, Y. Liu, and M. Peng, Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite, J. Environ. Manage. 86 (2008) 319-28.

DOI: 10.1016/j.jenvman.2006.12.011

Google Scholar

[17] A. Homavand, D.E. Cree, and L.D. Wilson, Polylactic Acid Composites Reinforced with Eggshell/CaCO3 Filler Particles: A Review, Waste 2 (2024) 169-185.

DOI: 10.3390/waste2020010

Google Scholar

[18] A.E. Olowofoyeku, A.K. Aremu, A.O. Olorunnisola, A.E. Olowofoyeku, E.O. Faluyi, and D.G. Adekanmi, Photoluminescent Polymer Nanocomposites : Innovative Materials for Enhanced Light Management and Crop Yield Optimization, 9 (2025) 61-83.

DOI: 10.4028/p-7adog1

Google Scholar

[19] A. Patti, H. Lecocq, A. Serghei, D. Acierno, and P. Cassagnau, The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing, J. Ind. Eng. Chem. 96 (2021) 1-33.

DOI: 10.1016/j.jiec.2021.01.024

Google Scholar

[20] N.H. Aprilita, T. Febriani, P. Ofens, M. Nora, T.A. Nassir, E.T. Wahyuni, N. Sciences, and U.G. Mada, Conversion of the styrofoam waste into a high-capacity and recoverable adsorbent in the removing the toxic Pb2+ from water media, 26 (2024) 1-10.

DOI: 10.30955/gnj.005415

Google Scholar

[21] J. Wang, Z. Cheng, D. Chen, G. Li, J. Chen, K. Wang, L. Xu, and J. Huang, An injectable porous bioactive magnesium phosphate bone cement foamed with calcium carbonate and citric acid for periodontal bone regeneration, J. Mech. Behav. Biomed. Mater. 142 (2023) 105805.

DOI: 10.1016/j.jmbbm.2023.105805

Google Scholar

[22] J. Fu, C.P. Leo, and P.L. Show, Recent advances in the synthesis and applications of pH-responsive CaCO3, Biochem. Eng. J. 187 (2022) 108446-108446.

DOI: 10.1016/j.bej.2022.108446

Google Scholar

[23] A.H. Ritonga, B. Aritonang, G.E. Putri, K. Khairiah, E.W.B. Siahaan, and D. Meilani, PLA/LLDPE/Organo-Precipitated Calcium Carbonate Composites Containing LLDPE-g-OA Compatibilizers: Mechanical, Physical, Thermal, and Morphology, Indones. J Chem. 23 (2023) 1694-1703.

DOI: 10.22146/ijc.86983

Google Scholar

[24] D. Wang, H. Wang, B. Qian, H. Zou, K. Zheng, X. Zhou, Y. Song, and Y. Sheng, Preparation of hydrophobic calcium carbonate phosphors and its application in fluorescent films, J. Lumin. 219 (2020) 1-8.

DOI: 10.1016/j.jlumin.2019.116844

Google Scholar

[25] N. Thyashan, Y.S. Perera, R. Xiao, and C. Abeykoon, Investigation of the effect of materials and processing conditions in twin-screw extrusion, Int. J. Lightweight Mater. Manuf. 7 (2024) 353-361.

DOI: 10.1016/j.ijlmm.2023.09.003

Google Scholar

[26] H.M. Abd El-Lateef, M.M. Khalaf, M.F. Abou Taleb, and M. Gouda, Development of photoluminescent concrete from polystyrene plastic reinforced with electrospun polypropylene nanofibers, J. Photochem. Photobiol. A: Chem. 449 (2024) 1-9.

DOI: 10.1016/j.jphotochem.2023.115419

Google Scholar

[27] ASTM, "Standard Test Method for Rubber Property—Durometer Hardness," ASTM D2240-15(2021), ASTM International, 2021.

Google Scholar

[28] ASTM, "Standard Test Method for Water Absorption of Plastics," ASTM D570-22, ASTM International, 2022.

Google Scholar

[29] K. Longkaew, A. Gibaud, W. Tessanan, P. Daniel, and P. Phinyocheep, Spherical CaCO3: Synthesis, Characterization, Surface Modification and Efficacy as a Reinforcing Filler in Natural Rubber Composites, Polymers 15 (2023).

DOI: 10.3390/polym15214287

Google Scholar

[30] M. Al-Shirawi, M. Karimi, and R.S. Al-Maamari, Impact of carbonate surface mineralogy on wettability alteration using stearic acid, J. Pet. Sci. Eng. 203 (2021) 1-11.

DOI: 10.1016/j.petrol.2021.108674

Google Scholar

[31] Y. Ma, P. Tian, M. Bounmyxay, Y. Zeng, and N. Wang, Calcium Carbonate@silica Composite with Superhydrophobic Properties, Molecules 26 (2021) 1-14.

DOI: 10.3390/molecules26237180

Google Scholar

[32] R. Beltrami, M. Colombo, G. Bitonti, M. Chiesa, C. Poggio, and G. Pietrocola, Restorative Materials Exposed to Acid Challenge: Influence of Temperature on In Vitro Weight Loss, Biomimetics 7 (2022) 30-30.

DOI: 10.3390/biomimetics7010030

Google Scholar

[33] A.K. Chaudhary, and R.P. Vijayakumar, Effect of chemical treatment on biological degradation of high-density polyethylene (HDPE), Environ. Dev. Sustainability 22 (2020) 1093-1104.

DOI: 10.1007/s10668-018-0236-6

Google Scholar

[34] A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, and B. Isfa, Improvement of Mechanical, Thermal, and Morphological Properties of Organo-Precipitated Calcium Carbonate Filled LLDPE/Cyclic Natural Rubber Composites, Indones. J Chem. 22 (2022) 233-241.

DOI: 10.22146/ijc.68888

Google Scholar

[35] B. Kanoje, J. Parikh, and K. Kuperkar, Crystallization study and morphology behaviour of calcium carbonate crystals in aqueous Surfactant-Pluronics® prototype, J. Mater. Res. Technol. 7 (2018) 508-514.

DOI: 10.1016/j.jmrt.2017.10.005

Google Scholar

[36] A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, B. Isfa, V. Sisca, and H. Faisal, Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology, J. Mater. Res. Technol. 17 (2022) 2326-2332.

DOI: 10.1016/j.jmrt.2022.01.125

Google Scholar

[37] A. Aattache, and R. Soltani, Durability-related properties of early-age and long-term resistant laboratory elaborated polymer-based repair mortars, Constr. Build. Mater. 235 (2020) 117494-117494.

DOI: 10.1016/j.conbuildmat.2019.117494

Google Scholar

[38] P. Srihanam, W. Thongsomboon, and Y. Baimark, Phase Morphology, Mechanical, and Thermal Properties of Calcium Carbonate-Reinforced Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastics, Polymers 15 (2023) 301-301.

DOI: 10.3390/polym15020301

Google Scholar

[39] F. Ippolito, G. Hübner, T. Claypole, and P. Gane, Influence of the Surface Modification of Calcium Carbonate on Polyamide 12 Composites, Polymers 12 (2020) 1295-1295.

DOI: 10.3390/polym12061295

Google Scholar

[40] P. Zapata, H. Palza, B. Díaz, A. Armijo, F. Sepúlveda, J. Ortiz, M. Ramírez, and C. Oyarzún, Effect of CaCO3 Nanoparticles on the Mechanical and Photo-Degradation Properties of LDPE, Molecules 24 (2018) 1-12.

DOI: 10.3390/molecules24010126

Google Scholar

[41] N. Hayeemasae, and H. Ismail, Potential of calcium carbonate as secondary filler in eggshell powder filled recycled polystyrene composites, Polímeros 31 (2021) 1-7.

DOI: 10.1590/0104-1428.09720

Google Scholar

[42] M. Gouda, H.M. Abd El-Lateef, M.F. Abou Taleb, and M.M. Khalaf, Photoluminescent polypropylene nanofiber-supported polyethylene terephthalate integrated with strontium aluminate phosphor, J. Photochem. Photobiol. A: Chem. 453 (2024) 1-9.

DOI: 10.1016/j.jphotochem.2024.115675

Google Scholar

[43] M. Tareeva, M. Shevchenko, S. Umanskaya, V. Savichev, A. Baranov, N. Tcherniega, and A. Kudryavtseva, Two-Photon Excited Luminescence in Polyethylene and Polytetrafluoroethylene, J. Russ. Laser Res. 41 (2020) 502-508.

DOI: 10.1007/s10946-020-09903-8

Google Scholar

[44] T. Huang, K.D. Li, and M. Ek, Hydrophobization of cellulose oxalate using oleic acid in a catalyst-free esterification suitable for preparing reinforcement in polymeric composites, Carbohydr. Polym. 257 (2021) 117615.

DOI: 10.1016/j.carbpol.2021.117615

Google Scholar

[45] D. Jahani, A. Nazari, J. Ghourbanpour, and A. Ameli, Polyvinyl Alcohol/Calcium Carbonate Nanocomposites as Efficient and Cost-Effective Cationic Dye Adsorbents, Polymers 12 (2020) 2179-2179.

DOI: 10.3390/polym12102179

Google Scholar

[46] N. Wierzbicka, R. Talar, K. Grochalski, A. Piasecki, W. Graboń, M. Węgorzewski, and A. Reiter, Influence of Inorganic Additives on the Surface Characteristics, Hardness, Friction and Wear Behavior of Polyethylene Matrix Composites, Materials 16 (2023) 4960-4960.

DOI: 10.3390/ma16144960

Google Scholar

[47] D. Dey, and P. Banerjee, Toxic organic solvent adsorption by a hydrophobic covalent polymer, New J. Chem. 43 (2019) 3769-3777.

DOI: 10.1039/c8nj06249h

Google Scholar