p.1
p.25
p.37
p.49
p.73
Metal Nanoparticles and Polymer Incorporated Cement Rock. The Role of Magnetite Nanoparticles in the Mechanical and Bonding Behavior of Portland Cement in Structuring: A Short Review
Abstract:
The changes in the mechanical and physical properties of concrete prepared by incorporating various metal oxide nanoparticles into cement products used in both the oil/gas industry and construction have been analyzed in this review. The study compares the properties exhibited by transition metal oxide and some metal nanoparticles in both isolated and complex forms with polymers in concrete. Analyses were conducted primarily in the direction of changes occurring in properties due to the addition of metal oxide nanoparticles such as magnetite Fe3O4, TiO2, ZnO, Fe2O3, Ag, CuO, TiO2/SiO2, Al2O3, ZrO2, core/shell Fe3O4/SiO2, in dispersed form as cement powder or in water. It has been showed that appropriate changes occur in properties such as compressive and flexural strength, adhesion, initial and final setting, water absorption, porosity, electrical conductivity, degradation when metal oxide nanoparticles are added to cement. The density and size of nanoparticles affect their response to various influences, alongside the fundamental properties of the material.
Info:
Periodical:
Pages:
1-24
Citation:
Online since:
December 2025
Keywords:
Permissions:
Citation:
* - Corresponding Author
[1] M. Alavi, P. Kamarasu, D.J. McClements, M.D. Moore, "Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications", Adv. Colloid Interface Sci., vol. 306, p.102726, 2022.
[2] J. de Brito, R. Kurda, "The past and future of sustainable concrete: A critical review and new strategies on cement-based materials", J. Clean. Prod., vol. 281, p.123558, 2021.
[3] I. Pol Segura, N. Ranjbar, A. J. Damø, L. S. Jensen, M. Canut, P. A. Jensen, A review: "Alkali activated cement and concrete production technologies available in the industry", Heliyon, vol. 9, no. 5, pp. e15718, 2023.
[4] A. Korpa, T. Kowald, R. Trettin, "Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives", Cem. Concr. Res., vol. 38, no. 7, p.955–962, 2008.
[5] N.B. Singh, M. Kalra, S.K. Saxena, "Nanoscience of Cement and Concrete", Mater.Today Proc., 4(4 Part E), p.5478–5487, 2017.
[6] C.-C. Cormos, "Decarbonization options for cement production process: A techno economic and environmental evaluation", Fuel, vol. 320, p.123907, 2022.
[7] Y. Reches, "Nanoparticles as concrete additives: Review and perspectives", Constr. Build. Mater., vol. 175, p.483–495, 2018.
[8] F. Sanchez, K. Sobolev, "Nanotechnology in concrete – A review", Constr. Build. Mater., vol. 24 no.11, p.2060–2071, 2010.
[9] T. Hirsch, T. Matschei, D. Stephan, "The hydration of tricalcium aluminate (Ca₃Al₂O₆) in Portland cement-related systems: A review", Cem. Concr. Res., vol. 168, p.107150, 2023.
[10] F. Amor, M. Baudys, Z. Racova, L. Scheinherrová, L. Ingrisova, P. Hajek, "Contribution of TiO₂ and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High-Performance Concrete", Case Stud. Constr. Mater., vol. 16, pp. e00965, 2022.
[11] M.J. Hanus, A.T. Marris, "Nanotechnology innovations for the construction industry", Prog. Mater. Sci., vol. 58, no.7, p.1056–1102, 2013.
[12] H. Saleem, S. J. Zaidi, N. A. Alnuaimi, "Recent advancements in the nanomaterial application in concrete and its ecological impact", Materials (Basel), vol. 14, no. 21, p.6387, 2021.
DOI: 10.3390/ma14216387
[13] A. P. Svintsov, E. L. Shchesnyak, V. V. Galishnikova, R. S. Fediuk, N. A. Stashevskaya, "Effect of nano-modified additives on properties of concrete mixtures during winter season", Constr. Build. Mater., vol. 237, p.117527, 2020.
[14] M. Kamal, M. A. Safan, M. Eltabey, E. S. Zaki, Kh. Abu El-Hassan, "Compressive strength of Portland cement pastes and mortars containing Cu-Zn nano-ferrite", Int. J. Nano Dimens., vol. 3, no. 2, p.91–100, 2012.
[15] S. P. Shah, P. Hou, M. S. Konsta-Gdoutos, "Nano-modification of cementitious material: toward a stronger and durable concrete", J. Sustain. Cem. Based Mater., vol. 5, p.1–22, 2016.
[16] W. Sun, S. Zhang, C. Wang, Z. Liu, Z. Mao, "Enhanced photocatalytic hydrogen evolution over CaTi1-xZrxO3 composites synthesized by polymerized complex method", Catal. Lett., vol. 119, p.148–153, 2007.
[17] U. G. Akpan, B. H. Hameed, "Enhancement of the photocatalytic activity of TiO2 by doping it with calcium ions", J. Colloid Interface Sci., vol. 357, p.68–78, 2011.
[18] L. S. Cavalcante, V. S. Marques, J. C. Sczancoski, M. T. Escote, M. R. Joya, J. A. Varela, et al., "Synthesis, structural refinement and optical behavior of CaTiO3 powders: a comparative study of processing in different furnaces", Chem. Eng. J., vol. 143, p.299–307, 2008.
[19] J. Coren, O. Coren, "Evaluation of calcium titanate as apatite growth promoter", J. Biomed. Mater. Res., 75A, p.478–484, 2005.
DOI: 10.1002/jbm.a.30351
[20] O. Meral, R. Şahin, "Effect of nano SiO₂, nano-Al₂O₃ and nano-Fe₂O₃ powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study", Energy Build., vol. 58, pp. p.292–301, 2013.
[21] F. Pacheco-Torgal, S. Jalali, "Nanotechnology: Advantages and drawbacks in the field of construction and building materials", Constr. Build. Mater., vol. 25, no. 2, p.582–590, 2011.
[22] X. Zhou, D. Zhang, H. Gao, "The advancement of multifunctional concrete and cement-based composites incorporating carbon nanotubes and nanofibers", Nano Mater. Sci., vol. 3, no.1, p.1–22, 2021.
[23] S. Yousefi Oderji, B. Chen, M. R. Ahmad, Q. L. Yu, "Comparative assessment of the use of graphene nanoplatelets and nanosilica in ultra-high performance cementitious composites", Constr. Build. Mater., vol. 211, p.748–757, 2019.
[24] A. Cwirzen, V. Penttala, C. Vornanen, "Effects of nanosilica on the properties of cement mortars and concrete", Key Eng. Mater., vol. 509, p.189–194, 2012.
[25] M. Ali, A. Said, "Effect of nanomaterials on the rheology of cement paste and concrete: A review", Constr. Build. Mater., vol. 279, p.122476, 2021.
[26] M. Zhang, H. Li, C. Lin, W. Ding, Y. Zhan, "The effect of nanomaterials on the microstructure and properties of cement-based materials: A review" Nanomaterials, vol. 11, no. 7, p.1796, 2021.
DOI: 10.3390/nano11071796
[27] A. Sobolkina, V. Mechtcherine, V. Khavrus, et al., "Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix", Cem. Concr. Compos., vol. 34, no. 10, p.1104–1113, 2012.
[28] P. Hou, X. Cheng, S. P. Shah, "Effects of colloidal silica on the mechanical properties of cement pastes", Constr. Build. Mater., vol. 48, p.875–883, 2013.
[29] B. W. Jo, C. H. Kim, J. H. Lim, H. B. Kim, "Characteristics of cement mortar with nano-SiO₂ particles", Constr. Build. Mater., vol. 21, no. 6, p.1351–1355, 2007.
[30] G. Quercia, H. J. H. Brouwers, "Application of nano-silica in concrete – A review", Constr. Build. Mater., vol. 37, p.934–942, 2012.
[31] L. Cassar, et al., "White cement for architectural concrete, possessing photocatalytic properties", in: Proc. Int. Congr. Chem. Cem., Durban, South Africa, 2003.
[32] A. Skarendahl, "Nanotechnology developments for building and protection", Vbyggaren,Swed. Soc. Civ. Struct. Eng., vol. 6, p.8–11, 2003.
[33] L. W. Mo, M. Deng, M. S. Tang, et al., "MgO expansive cement and concrete in China: past present and future", Cem. Concr. Res., vol. 57, p.1–12, 2014.
[34] R. Moradpour, E. Taheri-Nassaj, T. Parhizkar, et al., "The effects of nanoscale expansive agents on the mechanical properties of non-shrink cement-based composites: the influence of nano-MgO addition", Compos. Part B Eng., vol. 55, p.193–202, 2013.
[35] S. Kawashima, J. W. Kim, D. J. Corr, S. P. Shah, "Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays", Constr. Build. Mater., vol. 36, p.749–757, 2012.
[36] H. M. Alkhateb, K. M. A. Hossain, M. Lachemi, "Performance of nano-clay and nano-SiO₂ incorporated ultra highperformance concrete under multi-axial stress states", Constr. Build. Mater., vol. 274, p.121746, 2021.
[37] L. Senff, D. Hotza, W. L. Repette, V. M. Ferreira, J. A. Labrincha, "Application of nano-SiO₂ particles for enhancing the rheological behavior of cement pastes", Constr. Build. Mater., vol. 23, no. 7, p.2487–2491, 2009.
[38] H. Li, M.-h. Zhang, J.-p. Ou, "Abrasion resistance of concrete containing nano-particles for pavement", Wear, vol. 260, p.1262–1266, 2006.
[39] F. Vallee, et al., "Cementitious materials for self-cleaning and depolluting facade surfaces, in: Proc". RILEM Int. Symp., PRO 41, p.337–346, 2004.
[40] K. Kamitani, et al., "Air purifying pavement: development of photocatalytic concrete blocks", in: Z. Wu (ed.), Int. Symp. Cem. Concr., p.751–755, 1998.
[41] J. S. Dalton, et al., "Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach", Environ. Pollut., vol. 120, no.2, p.415–422, 2002.
[42] H. Li, M.-H. Zhang, J.-P. Ou, "Flexural fatigue performance of concrete containing nanoparticles for pavement", Int. J. Fatigue, vol. 29, no. 7, p.1292–1301, 2007.
[43] A. Yousefi, A. Allahverdi, P. Hejazi, "Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes", Constr. Build. Mater., vol. 41, p.224–230, 2013.
[44] N. Feng, C. Xie, Z. Gong, H. Leng, H. Xiao, H. Li, X. Shi, "Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective", Ind. Eng. Chem. Res., vol. 52, no. 33, p.11575–11582, 2013.
DOI: 10.1021/ie4011595
[45] M. Jalal, M. Fathi, M. Farzad, "Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete", Mech. Mater., vol. 61, p.11–27, 2013.
[46] N. Farzadnia, A. A. Ali, R. Demirboga, M. P. Anwar, "Characterization of high strength mortars with nano Titania at elevated temperatures", Constr. Build. Mater., vol. 43, p.469–479, 2013.
[47] S. L. Zhang, X. Q. Qi, S. Y. Guo, J. Ren, J. C. Chen, B. Chi, X. C. Wang, "Effect of a novel hybrid TiO2-graphene composite on enhancing mechanical and durability characteristics of alkali-activated slag mortar", Constr. Build. Mater., vol. 275, p.122154, 2021.
[48] S. Y. Guo, H. H. Luo, Z. Tan, J. Z. Chen, L. Zhang, J. Ren, "Impermeability and interfacial bonding strength of TiO2-graphene modified epoxy resin coated OPC concrete", Prog. Org. Coat., vol. 151, p.106029, 2021.
[49] B. Han, S. Ding, J. Wang, J. Ou, "Nano-engineered cementitious composites: principles and practices", Springer Nature Singapore Pte Ltd., p.731, 2019.
[50] B. Han, Z. Li, L. Zhang, S. Zeng, X. Yu, B. Han, J. Ou, "Reactive powder concrete reinforced with nano SiO2-coated TiO2", Constr. Build. Mater., vol. 148, p.104–112, 2017.
[51] Z. Li, et al., "Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite", Mater. Lett., vol. 60, p.356–359, 2006.
[52] J. J. Fan, et al., "Influence of synthetic nano-ZrO2 powder on the strength property of portland cement", Jianzhu Cailiao Xuebao, vol. 7, no. 4, p.462–467, 2004.
[53] B. Han, et al., "Specific resistance and pressure-sensitivity of cement paste admixing with nano-TiO2 and carbon fiber", Guisuanyan Xuebao, vol. 32, no. 7, p.884–887, 2004.
[54] R. Zhang, X. Cheng, P. Hou, Z. Ye, "Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage", Constr. Build. Mater., vol. 81, p.35–41, 2015.
[55] J. A. Abdalla, B. S. Thomas, R. A. Hawileh, J. Yang, B. B. Jindal, E. Ariyachandra, "Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete", Cleaner Mater., vol. 4, p.100061, 2022.
[56] E. Mohseni, F. Naseri, O. Amiri, A. Dalvand, "Synthesis and application of nanomaterials in cement and concrete composites: A review on recent advances", Constr. Build. Mater., vol. 279, p.122506, 2021.
[57] E. Ghafari, H. Costa, E. Júlio, "Critical review on nanomaterials and their effects on sustainable concrete", Constr. Build. Mater., vol. 101, p.57–64, 2015.
[58] Z. Wu, C. Shi, K. H. Khayat, "Effect of nano-SiO₂ particles on microstructure development and properties of cement-based materials: A review", Constr. Build. Mater., vol. 148, p.62–79, 2017.
[59] P. Hosseini, S. Khalili, M. Shekarchi, "Long-term durability of self-cleaning concrete containing TiO₂ nanoparticles", Constr. Build. Mater., vol. 96, p.188–196, 2015.
[60] A. Nazari, S. Riahi, "The effects of SiO₂ nanoparticles on properties of concrete using ground granulated blast furnace slag as binder", Compos. Part B Eng., vol. 42, no. 3, p.570–578, 2011.
[61] M. Jalal, A. R. Pouladkhan, O. F. Harandi, D. Jafari, "Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete", Constr. Build. Mater., vol. 94, p.90–104, 2015.
[62] A. Nazari, S. Riahi, "TiO₂ nanoparticles effects on physical, thermal and mechanical properties of self compacting concrete with ground granulated blast furnace slag as binder", Energy Build., vol. 43, no. 4, p.995–1002, 2011.
[63] P. Sikora, P. Woyciechowski, E. Horszczaruk, "Utilization of nanomaterials in self-compacting concrete: A review", Materials, vol. 11, no. 2, p.245, 2018.
DOI: 10.3390/ma11020245
[64] F. Sanchez, K. Sobolev, "Nanotechnology in concrete – A review", Constr. Build. Mater., vol. 24, no. 11, p.2060–2071, 2010.
[65] A. Alhozaimy, M. Sulieman, R. R. Hussain, "Influence of nano-silica addition on properties of fresh and hardened cement-based materials", Constr. Build. Mater., vol. 48, p.242–248, 2013.
[66] G. Y. Li, P. M. Wang, X. Zhao, "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, vol. 43, no. 6, p.1239–1245, 2005.
[67] D. Dutta, S. Mandal, S. Choudhury, et al., "Recent advancements in nanotechnology for sustainable construction practices: A review", Constr. Build. Mater., vol. 356, p.129234, 2022.
[68] S. Kawashima, S. P. Shah, "Fresh, mechanical and durability properties of cementitious materials incorporating nanomaterials", Cem. Concr. Compos., vol. 48, p.1–17, 2014.
[69] A. Nazari, et al., "Benefits of Fe2O3 nanoparticles in concrete mixing matrix", J. Am. Sci., vol. 6, no. 4, p.102–106, 2010.
[70] M. S. Konsta-Gdoutos, Z. S. Metaxa, S. P. Shah, "Highly dispersed carbon nanotube reinforced cement-based materials", Cem. Concr. Res., vol. 40, no. 7, p.1052–1059, 2010.
[71] S. Musso, J. M. Tulliani, G. Ferro, A. Tagliaferro, "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Technol., vol. 69, no. 11–12, p.1985–1990, 2009.
[72] S. F. Humbatova, et al., "Investigation of mass gradient of concrete filled with polyacrylamide/Fe₃O₄ magnetite nanoparticles in Caspian Sea and formation water medium", Chem. Probl., vol. 22, no. 2, p.95–102, 2024.
[73] K. L. Scrivener, T. Füllmann, E. Gallucci, G. Walenta, E. Bermejo, "Quantitative study of Portland cement hydration by X ray diffraction/Rietveld analysis and independent methods", Cem. Concr. Res., vol. 34, no. 9, p.1541–1547, 2004.
[74] Sh. Z. Tapdqiov, "Investigated content and structure copolymers obtained based N-vinylpyrrolidone with N, N'-methylenbisacrylamide", J. Nat. Tech. Sci., vol. 66, no. 6, p.93–98, 2012.
[75] Sh. Z. Tapdigov, "Electrostatic and hydrogen bond immobilization trypsine onto pH-sensitive N-vinylpyrrolidone and 4-vinylpyridine co-grafted chitosan hydrogel", Macromol. Res., vol. 29, no.2, p.120–128, 2021.
[76] Sh. Z. Tapdigov, "A drug-loaded gel based on graft radical co-polymerization of N-vinylpyrrolidone and 4-vinylpyridine with chitosan", Cell. Chem. Tech., vol. 54, no. 5, p.429–438, 2020.
[77] Z. T. Shamo, Y. M. Elvin, F. Ah. Fariz, Sh. K. Sevda, M. G. Ayaz, M. M. Samire, F. H. Seadat, E. G. Jamila, "The physical-mechanical behavior and chemical bonding nature of poly-N-vinylpyrrolidone modified cement concrete", Heliyon, vol. 10, no. 4, pp. e26039, 2023.
[78] T. Shamo, M. Samira, J. Guliyeva, "Effect of temperature on the mechanical properties of polyacrylamide modified cement concrete", in: 8th International European Conference on Interdisciplinary Scientific Research, Rome, Italy, p.241, 2023.
[79] S. F. Humbatova, et al., "Investigation of mass gradient of concrete filled with polyacrylamide/Fe₃O₄ magnetite nanoparticles in Caspian Sea and formation water medium", Chem. Probl., vol. 22, no. 2, p.95–102, 2024.
[80] J. M. Makar, G. W. Chan, "Growth of cement hydration products on single-walled carbon nanotubes", J. Am. Ceram. Soc., vol. 92, no. 6, p.1303–1310, 2009.
[81] A. Zhang, Y. Ge, G. Wang, "Evaluating the use of nano-SiO₂/Al₂O₃ to mitigate damage in cement mortar exposed to magnesium chloride solution under different conditions", Constr. Build. Mater., vol. 392, p.131965, 2023.
[82] B. Han, X. Yu, J. Ou, "Self-sensing concrete in smart structures", Sensors, vol. 14, no. 10, p.17778–17817, 2014.
[83] S. Tapdiqov, S. Humbatova, S. Mammadova, J. Guliyeva, E. Malikov, S. Kazimova, F. Akhmed, "FTIR and X-ray investigation of poly-N-vinylpyrrolidone and nano magnetite-Fe3O4 modified concrete structure", Proc. Azerb. High Tech. Educ. Inst. J., vol. 36, no. 4, p.144–154, 2024.
[84] N. Ukrainczyk, N. Vrbos, J. Sipusic, "Influence of metal chloride salts on calcium aluminate cement hydration", Adv. Cem. Res., vol. 25, no. 5, p.249–262.
[85] R. Nithya, S. Barathan, M. Gopalakrishan, S. Ganesan Sivakumar, "The hydration of heavy metal salts admixtured high alumina cement – A X-ray diffraction study", Appl. Phys. Res., vol. 1, no. 2, p.19, 2009.
DOI: 10.5539/apr.v1n2p19
[86] G. Zhu, W. Zhu, Y. Fu, B. Yan, H. Jiang, "Effects of chloride salts on strength, hydration, and microstructure of cemented tailings backfill with one part alkali activated slag", Constr. Build. Mater., vol. 374, p.130965, 2023.
[87] S. Fan, B. Chen, "Experimental study of phosphate salts influencing properties of magnesium phosphate cement", Constr. Build. Mater., vol. 65, p.480–486, 2014.
[88] S. K. Ouki, C. D. Hills, "Microstructure of Portland cement pastes containing metal nitrate salts", Waste Manag., vol. 22, no. 2, p.147–151, 2002.
[89] E. Fratalocchi, J. Domizi, M. Felici, F. Mazzieri, "Sorption and hydraulic performance of cement-bentonite cutoffs in saline sulphatic solutions", Soils Found., vol. 63, no. 3, p.101315, 2023.
[90] A. Ahmed, A. Abdelaal, S. Elkatatny, "Evaluation of hematite and Micromax based cement systems for high density well cementing", J. Pet. Sci. Eng., vol. 220, p.111125, 2023.
[91] B. Bageri, A. Ahmed, J. Al Jaberi, S. Elkatatny, S. Patil, "Effect of perlite particles on the properties of oil well class G cement", J. Pet. Sci. Eng., vol.199, p.108344, 2021.
[92] M. S. M. Norhasria, M. S. Hamidah, A. M. Fadzil, "Applications of using nano material in concrete: A review", Constr. Build. Mater., vol. 133, p.91–97, 2017.
[93] Sh. Z. Tapdigov, F. F. Ahmad, N. N. Hamidov, et all, "Increase in the efficiency of water shut-off with the application of polyethylenpolyamine added cement", Chem. Probl., vol. 20, p.59–67, 2022.
[94] S. Humbetova, S. Tapdiqov, S. Mammadova, J. Guliyeva, F. Akhmed, "The effect of magnetite nanoparticles on the adsorption behavior of poly-N-vinylpyrrolidone added concrete", in: 9th International Ankara Scientific Research Congress, Ankara, 26–28 Dec., p.836–837, 2023.
[95] P. Niewiadomski, "Short overview of the effects of nanoparticles on mechanical properties of concrete", Key Eng. Mater., vol. 662, p.257–260, 2015.
[96] A. Akyıldız, "Effect of magnetite nanoparticles on cement-based composite", Rev. Rom. Mater., vol. 51, no. 1, p.10–16, 2021.