Metal Nanoparticles and Polymer Incorporated Cement Rock. The Role of Magnetite Nanoparticles in the Mechanical and Bonding Behavior of Portland Cement in Structuring: A Short Review

Article Preview

Abstract:

The changes in the mechanical and physical properties of concrete prepared by incorporating various metal oxide nanoparticles into cement products used in both the oil/gas industry and construction have been analyzed in this review. The study compares the properties exhibited by transition metal oxide and some metal nanoparticles in both isolated and complex forms with polymers in concrete. Analyses were conducted primarily in the direction of changes occurring in properties due to the addition of metal oxide nanoparticles such as magnetite Fe3O4, TiO2, ZnO, Fe2O3, Ag, CuO, TiO2/SiO2, Al2O3, ZrO2, core/shell Fe3O4/SiO2, in dispersed form as cement powder or in water. It has been showed that appropriate changes occur in properties such as compressive and flexural strength, adhesion, initial and final setting, water absorption, porosity, electrical conductivity, degradation when metal oxide nanoparticles are added to cement. The density and size of nanoparticles affect their response to various influences, alongside the fundamental properties of the material.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] M. Alavi, P. Kamarasu, D.J. McClements, M.D. Moore, "Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications", Adv. Colloid Interface Sci., vol. 306, p.102726, 2022.

DOI: 10.1016/j.cis.2022.102726

Google Scholar

[2] J. de Brito, R. Kurda, "The past and future of sustainable concrete: A critical review and new strategies on cement-based materials", J. Clean. Prod., vol. 281, p.123558, 2021.

DOI: 10.1016/j.jclepro.2020.123558

Google Scholar

[3] I. Pol Segura, N. Ranjbar, A. J. Damø, L. S. Jensen, M. Canut, P. A. Jensen, A review: "Alkali activated cement and concrete production technologies available in the industry", Heliyon, vol. 9, no. 5, pp. e15718, 2023.

DOI: 10.1016/j.heliyon.2023.e15718

Google Scholar

[4] A. Korpa, T. Kowald, R. Trettin, "Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives", Cem. Concr. Res., vol. 38, no. 7, p.955–962, 2008.

DOI: 10.1016/j.cemconres.2008.03.003

Google Scholar

[5] N.B. Singh, M. Kalra, S.K. Saxena, "Nanoscience of Cement and Concrete", Mater.Today Proc., 4(4 Part E), p.5478–5487, 2017.

DOI: 10.1016/j.matpr.2017.06.003

Google Scholar

[6] C.-C. Cormos, "Decarbonization options for cement production process: A techno economic and environmental evaluation", Fuel, vol. 320, p.123907, 2022.

DOI: 10.1016/j.fuel.2022.123907

Google Scholar

[7] Y. Reches, "Nanoparticles as concrete additives: Review and perspectives", Constr. Build. Mater., vol. 175, p.483–495, 2018.

DOI: 10.1016/j.conbuildmat.2018.04.102

Google Scholar

[8] F. Sanchez, K. Sobolev, "Nanotechnology in concrete – A review", Constr. Build. Mater., vol. 24 no.11, p.2060–2071, 2010.

DOI: 10.1016/j.conbuildmat.2010.04.014

Google Scholar

[9] T. Hirsch, T. Matschei, D. Stephan, "The hydration of tricalcium aluminate (Ca₃Al₂O₆) in Portland cement-related systems: A review", Cem. Concr. Res., vol. 168, p.107150, 2023.

DOI: 10.1016/j.cemconres.2023.107150

Google Scholar

[10] F. Amor, M. Baudys, Z. Racova, L. Scheinherrová, L. Ingrisova, P. Hajek, "Contribution of TiO₂ and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High-Performance Concrete", Case Stud. Constr. Mater., vol. 16, pp. e00965, 2022.

DOI: 10.1016/j.cscm.2022.e00965

Google Scholar

[11] M.J. Hanus, A.T. Marris, "Nanotechnology innovations for the construction industry", Prog. Mater. Sci., vol. 58, no.7, p.1056–1102, 2013.

Google Scholar

[12] H. Saleem, S. J. Zaidi, N. A. Alnuaimi, "Recent advancements in the nanomaterial application in concrete and its ecological impact", Materials (Basel), vol. 14, no. 21, p.6387, 2021.

DOI: 10.3390/ma14216387

Google Scholar

[13] A. P. Svintsov, E. L. Shchesnyak, V. V. Galishnikova, R. S. Fediuk, N. A. Stashevskaya, "Effect of nano-modified additives on properties of concrete mixtures during winter season", Constr. Build. Mater., vol. 237, p.117527, 2020.

DOI: 10.1016/j.conbuildmat.2019.117527

Google Scholar

[14] M. Kamal, M. A. Safan, M. Eltabey, E. S. Zaki, Kh. Abu El-Hassan, "Compressive strength of Portland cement pastes and mortars containing Cu-Zn nano-ferrite", Int. J. Nano Dimens., vol. 3, no. 2, p.91–100, 2012.

DOI: 10.21608/erjm.2012.67113

Google Scholar

[15] S. P. Shah, P. Hou, M. S. Konsta-Gdoutos, "Nano-modification of cementitious material: toward a stronger and durable concrete", J. Sustain. Cem. Based Mater., vol. 5, p.1–22, 2016.

DOI: 10.1080/21650373.2015.1086286

Google Scholar

[16] W. Sun, S. Zhang, C. Wang, Z. Liu, Z. Mao, "Enhanced photocatalytic hydrogen evolution over CaTi1-xZrxO3 composites synthesized by polymerized complex method", Catal. Lett., vol. 119, p.148–153, 2007.

DOI: 10.1007/s10562-007-9212-8

Google Scholar

[17] U. G. Akpan, B. H. Hameed, "Enhancement of the photocatalytic activity of TiO2 by doping it with calcium ions", J. Colloid Interface Sci., vol. 357, p.68–78, 2011.

DOI: 10.1016/j.jcis.2011.01.027

Google Scholar

[18] L. S. Cavalcante, V. S. Marques, J. C. Sczancoski, M. T. Escote, M. R. Joya, J. A. Varela, et al., "Synthesis, structural refinement and optical behavior of CaTiO3 powders: a comparative study of processing in different furnaces", Chem. Eng. J., vol. 143, p.299–307, 2008.

DOI: 10.1016/j.cej.2007.12.014

Google Scholar

[19] J. Coren, O. Coren, "Evaluation of calcium titanate as apatite growth promoter", J. Biomed. Mater. Res., 75A, p.478–484, 2005.

DOI: 10.1002/jbm.a.30351

Google Scholar

[20] O. Meral, R. Şahin, "Effect of nano SiO₂, nano-Al₂O₃ and nano-Fe₂O₃ powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study", Energy Build., vol. 58, pp. p.292–301, 2013.

DOI: 10.1016/j.enbuild.2012.12.001

Google Scholar

[21] F. Pacheco-Torgal, S. Jalali, "Nanotechnology: Advantages and drawbacks in the field of construction and building materials", Constr. Build. Mater., vol. 25, no. 2, p.582–590, 2011.

DOI: 10.1016/j.conbuildmat.2010.07.009

Google Scholar

[22] X. Zhou, D. Zhang, H. Gao, "The advancement of multifunctional concrete and cement-based composites incorporating carbon nanotubes and nanofibers", Nano Mater. Sci., vol. 3, no.1, p.1–22, 2021.

DOI: 10.1016/j.nanoms.2020.12.002

Google Scholar

[23] S. Yousefi Oderji, B. Chen, M. R. Ahmad, Q. L. Yu, "Comparative assessment of the use of graphene nanoplatelets and nanosilica in ultra-high performance cementitious composites", Constr. Build. Mater., vol. 211, p.748–757, 2019.

DOI: 10.1016/j.conbuildmat.2019.03.264

Google Scholar

[24] A. Cwirzen, V. Penttala, C. Vornanen, "Effects of nanosilica on the properties of cement mortars and concrete", Key Eng. Mater., vol. 509, p.189–194, 2012.

DOI: 10.4028/www.scientific.net/KEM.509.189

Google Scholar

[25] M. Ali, A. Said, "Effect of nanomaterials on the rheology of cement paste and concrete: A review", Constr. Build. Mater., vol. 279, p.122476, 2021.

DOI: 10.1016/j.conbuildmat.2021.122476

Google Scholar

[26] M. Zhang, H. Li, C. Lin, W. Ding, Y. Zhan, "The effect of nanomaterials on the microstructure and properties of cement-based materials: A review" Nanomaterials, vol. 11, no. 7, p.1796, 2021.

DOI: 10.3390/nano11071796

Google Scholar

[27] A. Sobolkina, V. Mechtcherine, V. Khavrus, et al., "Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix", Cem. Concr. Compos., vol. 34, no. 10, p.1104–1113, 2012.

DOI: 10.1016/j.cemconcomp.2012.07.008

Google Scholar

[28] P. Hou, X. Cheng, S. P. Shah, "Effects of colloidal silica on the mechanical properties of cement pastes", Constr. Build. Mater., vol. 48, p.875–883, 2013.

DOI: 10.1016/j.conbuildmat.2013.07.041

Google Scholar

[29] B. W. Jo, C. H. Kim, J. H. Lim, H. B. Kim, "Characteristics of cement mortar with nano-SiO₂ particles", Constr. Build. Mater., vol. 21, no. 6, p.1351–1355, 2007.

DOI: 10.1016/j.conbuildmat.2005.12.020

Google Scholar

[30] G. Quercia, H. J. H. Brouwers, "Application of nano-silica in concrete – A review", Constr. Build. Mater., vol. 37, p.934–942, 2012.

DOI: 10.1016/j.conbuildmat.2012.07.052

Google Scholar

[31] L. Cassar, et al., "White cement for architectural concrete, possessing photocatalytic properties", in: Proc. Int. Congr. Chem. Cem., Durban, South Africa, 2003.

Google Scholar

[32] A. Skarendahl, "Nanotechnology developments for building and protection", Vbyggaren,Swed. Soc. Civ. Struct. Eng., vol. 6, p.8–11, 2003.

Google Scholar

[33] L. W. Mo, M. Deng, M. S. Tang, et al., "MgO expansive cement and concrete in China: past present and future", Cem. Concr. Res., vol. 57, p.1–12, 2014.

DOI: 10.1016/j.cemconres.2013.12.004

Google Scholar

[34] R. Moradpour, E. Taheri-Nassaj, T. Parhizkar, et al., "The effects of nanoscale expansive agents on the mechanical properties of non-shrink cement-based composites: the influence of nano-MgO addition", Compos. Part B Eng., vol. 55, p.193–202, 2013.

DOI: 10.1016/j.compositesb.2013.06.017

Google Scholar

[35] S. Kawashima, J. W. Kim, D. J. Corr, S. P. Shah, "Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays", Constr. Build. Mater., vol. 36, p.749–757, 2012.

DOI: 10.1016/j.conbuildmat.2012.06.060

Google Scholar

[36] H. M. Alkhateb, K. M. A. Hossain, M. Lachemi, "Performance of nano-clay and nano-SiO₂ incorporated ultra highperformance concrete under multi-axial stress states", Constr. Build. Mater., vol. 274, p.121746, 2021.

DOI: 10.1016/j.conbuildmat.2020.121746

Google Scholar

[37] L. Senff, D. Hotza, W. L. Repette, V. M. Ferreira, J. A. Labrincha, "Application of nano-SiO₂ particles for enhancing the rheological behavior of cement pastes", Constr. Build. Mater., vol. 23, no. 7, p.2487–2491, 2009.

DOI: 10.1016/j.conbuildmat.2009.02.005

Google Scholar

[38] H. Li, M.-h. Zhang, J.-p. Ou, "Abrasion resistance of concrete containing nano-particles for pavement", Wear, vol. 260, p.1262–1266, 2006.

DOI: 10.1016/j.wear.2005.08.006

Google Scholar

[39] F. Vallee, et al., "Cementitious materials for self-cleaning and depolluting facade surfaces, in: Proc". RILEM Int. Symp., PRO 41, p.337–346, 2004.

Google Scholar

[40] K. Kamitani, et al., "Air purifying pavement: development of photocatalytic concrete blocks", in: Z. Wu (ed.), Int. Symp. Cem. Concr., p.751–755, 1998.

Google Scholar

[41] J. S. Dalton, et al., "Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach", Environ. Pollut., vol. 120, no.2, p.415–422, 2002.

Google Scholar

[42] H. Li, M.-H. Zhang, J.-P. Ou, "Flexural fatigue performance of concrete containing nanoparticles for pavement", Int. J. Fatigue, vol. 29, no. 7, p.1292–1301, 2007.

DOI: 10.1016/j.ijfatigue.2006.11.002

Google Scholar

[43] A. Yousefi, A. Allahverdi, P. Hejazi, "Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes", Constr. Build. Mater., vol. 41, p.224–230, 2013.

DOI: 10.1016/j.conbuildmat.2012.12.030

Google Scholar

[44] N. Feng, C. Xie, Z. Gong, H. Leng, H. Xiao, H. Li, X. Shi, "Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective", Ind. Eng. Chem. Res., vol. 52, no. 33, p.11575–11582, 2013.

DOI: 10.1021/ie4011595

Google Scholar

[45] M. Jalal, M. Fathi, M. Farzad, "Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete", Mech. Mater., vol. 61, p.11–27, 2013.

DOI: 10.1016/j.mechmat.2013.02.003

Google Scholar

[46] N. Farzadnia, A. A. Ali, R. Demirboga, M. P. Anwar, "Characterization of high strength mortars with nano Titania at elevated temperatures", Constr. Build. Mater., vol. 43, p.469–479, 2013.

DOI: 10.1016/j.conbuildmat.2013.02.043

Google Scholar

[47] S. L. Zhang, X. Q. Qi, S. Y. Guo, J. Ren, J. C. Chen, B. Chi, X. C. Wang, "Effect of a novel hybrid TiO2-graphene composite on enhancing mechanical and durability characteristics of alkali-activated slag mortar", Constr. Build. Mater., vol. 275, p.122154, 2021.

DOI: 10.1016/j.conbuildmat.2020.122154

Google Scholar

[48] S. Y. Guo, H. H. Luo, Z. Tan, J. Z. Chen, L. Zhang, J. Ren, "Impermeability and interfacial bonding strength of TiO2-graphene modified epoxy resin coated OPC concrete", Prog. Org. Coat., vol. 151, p.106029, 2021.

DOI: 10.1016/j.porgcoat.2020.106029

Google Scholar

[49] B. Han, S. Ding, J. Wang, J. Ou, "Nano-engineered cementitious composites: principles and practices", Springer Nature Singapore Pte Ltd., p.731, 2019.

DOI: 10.1007/978-981-13-7078-6_10

Google Scholar

[50] B. Han, Z. Li, L. Zhang, S. Zeng, X. Yu, B. Han, J. Ou, "Reactive powder concrete reinforced with nano SiO2-coated TiO2", Constr. Build. Mater., vol. 148, p.104–112, 2017.

DOI: 10.1016/j.conbuildmat.2017.04.135

Google Scholar

[51] Z. Li, et al., "Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite", Mater. Lett., vol. 60, p.356–359, 2006.

DOI: 10.1016/j.matlet.2005.06.045

Google Scholar

[52] J. J. Fan, et al., "Influence of synthetic nano-ZrO2 powder on the strength property of portland cement", Jianzhu Cailiao Xuebao, vol. 7, no. 4, p.462–467, 2004.

Google Scholar

[53] B. Han, et al., "Specific resistance and pressure-sensitivity of cement paste admixing with nano-TiO2 and carbon fiber", Guisuanyan Xuebao, vol. 32, no. 7, p.884–887, 2004.

Google Scholar

[54] R. Zhang, X. Cheng, P. Hou, Z. Ye, "Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage", Constr. Build. Mater., vol. 81, p.35–41, 2015.

DOI: 10.1016/j.conbuildmat.2015.02.009

Google Scholar

[55] J. A. Abdalla, B. S. Thomas, R. A. Hawileh, J. Yang, B. B. Jindal, E. Ariyachandra, "Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete", Cleaner Mater., vol. 4, p.100061, 2022.

DOI: 10.1016/j.clema.2022.100061

Google Scholar

[56] E. Mohseni, F. Naseri, O. Amiri, A. Dalvand, "Synthesis and application of nanomaterials in cement and concrete composites: A review on recent advances", Constr. Build. Mater., vol. 279, p.122506, 2021.

DOI: 10.1016/j.conbuildmat.2021.122506

Google Scholar

[57] E. Ghafari, H. Costa, E. Júlio, "Critical review on nanomaterials and their effects on sustainable concrete", Constr. Build. Mater., vol. 101, p.57–64, 2015.

DOI: 10.1016/j.conbuildmat.2015.10.044

Google Scholar

[58] Z. Wu, C. Shi, K. H. Khayat, "Effect of nano-SiO₂ particles on microstructure development and properties of cement-based materials: A review", Constr. Build. Mater., vol. 148, p.62–79, 2017.

DOI: 10.1016/j.conbuildmat.2017.05.080

Google Scholar

[59] P. Hosseini, S. Khalili, M. Shekarchi, "Long-term durability of self-cleaning concrete containing TiO₂ nanoparticles", Constr. Build. Mater., vol. 96, p.188–196, 2015.

DOI: 10.1016/j.conbuildmat.2015.08.065

Google Scholar

[60] A. Nazari, S. Riahi, "The effects of SiO₂ nanoparticles on properties of concrete using ground granulated blast furnace slag as binder", Compos. Part B Eng., vol. 42, no. 3, p.570–578, 2011.

DOI: 10.1016/j.compositesb.2010.09.025

Google Scholar

[61] M. Jalal, A. R. Pouladkhan, O. F. Harandi, D. Jafari, "Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete", Constr. Build. Mater., vol. 94, p.90–104, 2015.

DOI: 10.1016/j.conbuildmat.2015.06.051

Google Scholar

[62] A. Nazari, S. Riahi, "TiO₂ nanoparticles effects on physical, thermal and mechanical properties of self compacting concrete with ground granulated blast furnace slag as binder", Energy Build., vol. 43, no. 4, p.995–1002, 2011.

DOI: 10.1016/j.enbuild.2010.11.022

Google Scholar

[63] P. Sikora, P. Woyciechowski, E. Horszczaruk, "Utilization of nanomaterials in self-compacting concrete: A review", Materials, vol. 11, no. 2, p.245, 2018.

DOI: 10.3390/ma11020245

Google Scholar

[64] F. Sanchez, K. Sobolev, "Nanotechnology in concrete – A review", Constr. Build. Mater., vol. 24, no. 11, p.2060–2071, 2010.

DOI: 10.1016/j.conbuildmat.2010.04.014

Google Scholar

[65] A. Alhozaimy, M. Sulieman, R. R. Hussain, "Influence of nano-silica addition on properties of fresh and hardened cement-based materials", Constr. Build. Mater., vol. 48, p.242–248, 2013.

DOI: 10.1016/j.conbuildmat.2013.06.043

Google Scholar

[66] G. Y. Li, P. M. Wang, X. Zhao, "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, vol. 43, no. 6, p.1239–1245, 2005.

DOI: 10.1016/j.carbon.2004.12.017

Google Scholar

[67] D. Dutta, S. Mandal, S. Choudhury, et al., "Recent advancements in nanotechnology for sustainable construction practices: A review", Constr. Build. Mater., vol. 356, p.129234, 2022.

DOI: 10.1016/j.conbuildmat.2022.129234

Google Scholar

[68] S. Kawashima, S. P. Shah, "Fresh, mechanical and durability properties of cementitious materials incorporating nanomaterials", Cem. Concr. Compos., vol. 48, p.1–17, 2014.

DOI: 10.1016/j.cemconcomp.2013.11.008

Google Scholar

[69] A. Nazari, et al., "Benefits of Fe2O3 nanoparticles in concrete mixing matrix", J. Am. Sci., vol. 6, no. 4, p.102–106, 2010.

Google Scholar

[70] M. S. Konsta-Gdoutos, Z. S. Metaxa, S. P. Shah, "Highly dispersed carbon nanotube reinforced cement-based materials", Cem. Concr. Res., vol. 40, no. 7, p.1052–1059, 2010.

DOI: 10.1016/j.cemconres.2010.02.015

Google Scholar

[71] S. Musso, J. M. Tulliani, G. Ferro, A. Tagliaferro, "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Technol., vol. 69, no. 11–12, p.1985–1990, 2009.

DOI: 10.1016/j.compscitech.2009.04.020

Google Scholar

[72] S. F. Humbatova, et al., "Investigation of mass gradient of concrete filled with polyacrylamide/Fe₃O₄ magnetite nanoparticles in Caspian Sea and formation water medium", Chem. Probl., vol. 22, no. 2, p.95–102, 2024.

DOI: 10.32737/2221-8688-2024-1-95-102

Google Scholar

[73] K. L. Scrivener, T. Füllmann, E. Gallucci, G. Walenta, E. Bermejo, "Quantitative study of Portland cement hydration by X ray diffraction/Rietveld analysis and independent methods", Cem. Concr. Res., vol. 34, no. 9, p.1541–1547, 2004.

DOI: 10.1016/j.cemconres.2004.04.014

Google Scholar

[74] Sh. Z. Tapdqiov, "Investigated content and structure copolymers obtained based N-vinylpyrrolidone with N, N'-methylenbisacrylamide", J. Nat. Tech. Sci., vol. 66, no. 6, p.93–98, 2012.

Google Scholar

[75] Sh. Z. Tapdigov, "Electrostatic and hydrogen bond immobilization trypsine onto pH-sensitive N-vinylpyrrolidone and 4-vinylpyridine co-grafted chitosan hydrogel", Macromol. Res., vol. 29, no.2, p.120–128, 2021.

DOI: 10.1007/s13233-021-9015-6

Google Scholar

[76] Sh. Z. Tapdigov, "A drug-loaded gel based on graft radical co-polymerization of N-vinylpyrrolidone and 4-vinylpyridine with chitosan", Cell. Chem. Tech., vol. 54, no. 5, p.429–438, 2020.

DOI: 10.35812/cellulosechemtechnol.2020.54.44

Google Scholar

[77] Z. T. Shamo, Y. M. Elvin, F. Ah. Fariz, Sh. K. Sevda, M. G. Ayaz, M. M. Samire, F. H. Seadat, E. G. Jamila, "The physical-mechanical behavior and chemical bonding nature of poly-N-vinylpyrrolidone modified cement concrete", Heliyon, vol. 10, no. 4, pp. e26039, 2023.

DOI: 10.1016/j.heliyon.2024.e26039

Google Scholar

[78] T. Shamo, M. Samira, J. Guliyeva, "Effect of temperature on the mechanical properties of polyacrylamide modified cement concrete", in: 8th International European Conference on Interdisciplinary Scientific Research, Rome, Italy, p.241, 2023.

Google Scholar

[79] S. F. Humbatova, et al., "Investigation of mass gradient of concrete filled with polyacrylamide/Fe₃O₄ magnetite nanoparticles in Caspian Sea and formation water medium", Chem. Probl., vol. 22, no. 2, p.95–102, 2024.

DOI: 10.32737/2221-8688-2024-1-95-102

Google Scholar

[80] J. M. Makar, G. W. Chan, "Growth of cement hydration products on single-walled carbon nanotubes", J. Am. Ceram. Soc., vol. 92, no. 6, p.1303–1310, 2009.

DOI: 10.1111/j.1551-2916.2009.03075.x

Google Scholar

[81] A. Zhang, Y. Ge, G. Wang, "Evaluating the use of nano-SiO₂/Al₂O₃ to mitigate damage in cement mortar exposed to magnesium chloride solution under different conditions", Constr. Build. Mater., vol. 392, p.131965, 2023.

DOI: 10.1016/j.conbuildmat.2022.129419

Google Scholar

[82] B. Han, X. Yu, J. Ou, "Self-sensing concrete in smart structures", Sensors, vol. 14, no. 10, p.17778–17817, 2014.

Google Scholar

[83] S. Tapdiqov, S. Humbatova, S. Mammadova, J. Guliyeva, E. Malikov, S. Kazimova, F. Akhmed, "FTIR and X-ray investigation of poly-N-vinylpyrrolidone and nano magnetite-Fe3O4 modified concrete structure", Proc. Azerb. High Tech. Educ. Inst. J., vol. 36, no. 4, p.144–154, 2024.

DOI: 10.36962/pahtei40052024-144

Google Scholar

[84] N. Ukrainczyk, N. Vrbos, J. Sipusic, "Influence of metal chloride salts on calcium aluminate cement hydration", Adv. Cem. Res., vol. 25, no. 5, p.249–262.

DOI: 10.1680/adcr.11.00012

Google Scholar

[85] R. Nithya, S. Barathan, M. Gopalakrishan, S. Ganesan Sivakumar, "The hydration of heavy metal salts admixtured high alumina cement – A X-ray diffraction study", Appl. Phys. Res., vol. 1, no. 2, p.19, 2009.

DOI: 10.5539/apr.v1n2p19

Google Scholar

[86] G. Zhu, W. Zhu, Y. Fu, B. Yan, H. Jiang, "Effects of chloride salts on strength, hydration, and microstructure of cemented tailings backfill with one part alkali activated slag", Constr. Build. Mater., vol. 374, p.130965, 2023.

DOI: 10.1061/(ASCE)MT.1943-5533.0004612

Google Scholar

[87] S. Fan, B. Chen, "Experimental study of phosphate salts influencing properties of magnesium phosphate cement", Constr. Build. Mater., vol. 65, p.480–486, 2014.

DOI: 10.1016/j.conbuildmat.2014.08.030

Google Scholar

[88] S. K. Ouki, C. D. Hills, "Microstructure of Portland cement pastes containing metal nitrate salts", Waste Manag., vol. 22, no. 2, p.147–151, 2002.

DOI: 10.1016/S0956-053X(01)00063-0

Google Scholar

[89] E. Fratalocchi, J. Domizi, M. Felici, F. Mazzieri, "Sorption and hydraulic performance of cement-bentonite cutoffs in saline sulphatic solutions", Soils Found., vol. 63, no. 3, p.101315, 2023.

DOI: 10.1016/j.sandf.2023.101315

Google Scholar

[90] A. Ahmed, A. Abdelaal, S. Elkatatny, "Evaluation of hematite and Micromax based cement systems for high density well cementing", J. Pet. Sci. Eng., vol. 220, p.111125, 2023.

DOI: 10.1016/j.petrol.2022.111125

Google Scholar

[91] B. Bageri, A. Ahmed, J. Al Jaberi, S. Elkatatny, S. Patil, "Effect of perlite particles on the properties of oil well class G cement", J. Pet. Sci. Eng., vol.199, p.108344, 2021.

DOI: 10.1016/j.petrol.2021.108344

Google Scholar

[92] M. S. M. Norhasria, M. S. Hamidah, A. M. Fadzil, "Applications of using nano material in concrete: A review", Constr. Build. Mater., vol. 133, p.91–97, 2017.

DOI: 10.1016/j.conbuildmat.2016.12.096

Google Scholar

[93] Sh. Z. Tapdigov, F. F. Ahmad, N. N. Hamidov, et all, "Increase in the efficiency of water shut-off with the application of polyethylenpolyamine added cement", Chem. Probl., vol. 20, p.59–67, 2022.

DOI: 10.32737/2221-8688-2022-1-59-67

Google Scholar

[94] S. Humbetova, S. Tapdiqov, S. Mammadova, J. Guliyeva, F. Akhmed, "The effect of magnetite nanoparticles on the adsorption behavior of poly-N-vinylpyrrolidone added concrete", in: 9th International Ankara Scientific Research Congress, Ankara, 26–28 Dec., p.836–837, 2023.

Google Scholar

[95] P. Niewiadomski, "Short overview of the effects of nanoparticles on mechanical properties of concrete", Key Eng. Mater., vol. 662, p.257–260, 2015.

DOI: 10.4028/www.scientific.net/KEM.662.257

Google Scholar

[96] A. Akyıldız, "Effect of magnetite nanoparticles on cement-based composite", Rev. Rom. Mater., vol. 51, no. 1, p.10–16, 2021.

Google Scholar