[1]
R.K. Mishra, Fresh Water availability and Its Global challenge, Brit. J. Multi. Adv. Stud. 4 (2023) 1-78.
Google Scholar
[2]
E.J. Isukuru, J.O. Opha, O.W. Isaiah, B. Orovwighose, and S.S. Emmanuel, Nigeria's water crisis: Abundant water, polluted reality, Cleaner Water 2 (2024) 1-33.
DOI: 10.1016/j.clwat.2024.100026
Google Scholar
[3]
L. Lin, H. Yang, and X. Xu, Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review, Front. Environ. Sci. 10 (2022) 1-16.
Google Scholar
[4]
B. Shehu, and F. Nazim, "Clean Water and Sanitation for All: Study on SDGs 6.1 and 6.2 Targets with State Policies and Interventions in Nigeria," Environ. Sci. Proc., 15, 2022].
DOI: 10.3390/environsciproc2022015071
Google Scholar
[5]
S. Singh, Chapter 3 - Water pollution in rural areas: Primary sources and associated health issues: S. Madhav, A.L. Srivastav, S. Chibueze Izah and E.v. Hullebusch, eds., Water Resources Management for Rural Development, Elsevier, 2024, pp.29-44.
DOI: 10.1016/b978-0-443-18778-0.00011-8
Google Scholar
[6]
D.R.E. Ewim, O.F. Orikpete, T.O. Scott, C.N. Onyebuchi, A.O. Onukogu, C.G. Uzougbo, and C. Onunka, Survey of wastewater issues due to oil spills and pollution in the Niger Delta area of Nigeria: a secondary data analysis, Bull. Natl. Res. Cent. 47 (2023) 1-20.
DOI: 10.1186/s42269-023-01090-1
Google Scholar
[7]
O.C. Chidiobi, and J.C. Ibekwe, Oil Exploitation, Environmental issues and resource curse in a post-colonial Niger Delta Region of Nigeria: the unending search for peace, 1960–2009, ASSRJ 9 (2022) 373-394.
DOI: 10.14738/assrj.911.13291
Google Scholar
[8]
M. Fida, P. Li, Y. Wang, S.M.K. Alam, and A. Nsabimana, Water Contamination and Human Health Risks in Pakistan: A Review, Exposure and Health 15 (2022) 619-639.
DOI: 10.1007/s12403-022-00512-1
Google Scholar
[9]
S. Boulkhessaim, A. Gacem, S.H. Khan, A. Amari, V.K. Yadav, H.N. Harharah, A.M. Elkhaleefa, K.K. Yadav, S.U. Rather, H.J. Ahn, and B.H. Jeon, Emerging Trends in the Remediation of Persistent Organic Pollutants Using Nanomaterials and Related Processes: A Review, Nanomaterials (Basel) 12 (2022) 1-23.
DOI: 10.3390/nano12132148
Google Scholar
[10]
F. Elbehiry, T. Alshaal, N. Elhawat, and H. Elbasiouny, Environmental-friendly and cost-effective agricultural wastes for heavy metals and toxicants removal from wastewater, Cost-efficient Wastewater Treatment Technologies: Natural Systems, Springer, 2021, pp.107-127.
DOI: 10.1007/698_2021_786
Google Scholar
[11]
A. Sabitov, M. Atamanov, O. Doszhanov, K. Saurykova, K. Tazhu, A. Kerimkulova, A. Orazbayev, and Y. Doszhanov, Surface Characteristics of Activated Carbon Sorbents Obtained from Biomass for Cleaning Oil-Contaminated Soils, Molecules 29 (2024) 1-15.
DOI: 10.3390/molecules29163786
Google Scholar
[12]
Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali, and M. Sillanpää, Methods for preparation and activation of activated carbon: a review, Environ. Chem. Lett. 18 (2020) 393-415.
DOI: 10.1007/s10311-019-00955-0
Google Scholar
[13]
D. Ouyang, X. Lei, and H. Zheng, Recent Advances in Biomass-Based Materials for Oil Spill Cleanup, Nanomaterials (Basel) 13 (2023) 1-37.
DOI: 10.3390/nano13030620
Google Scholar
[14]
M.M. Tijani, A. Aqsha, and N. Mahinpey, Development of oil-spill sorbent from straw biomass waste: Experiments and modeling studies, J. Environ. Manage. 171 (2016) 166-176.
DOI: 10.1016/j.jenvman.2016.02.010
Google Scholar
[15]
Y. Zhang, E.K. Sam, J. Liu, and X. Lv, Biomass-Based/Derived Value-Added Porous Absorbents for Oil/Water Separation, Wast. Biom. Valorization 14 (2023) 3147-3168.
DOI: 10.1007/s12649-023-02112-9
Google Scholar
[16]
A.G. Adeniyi, C.A. Adeyanju, E.C. Emenike, S.K. Otoikhian, S. Ogunniyi, K.O. Iwuozor, and A.A. Raji, Thermal energy recovery and valorisation of Delonix regia stem for biochar production, Environ. Challenges 9 (2022) 1-33.
DOI: 10.1016/j.envc.2022.100630
Google Scholar
[17]
E.C. Emenike, S. Ogunniyi, J.O. Ighalo, K.O. Iwuozor, H.K. Okoro, and A.G. Adeniyi, Delonix regia biochar potential in removing phenol from industrial wastewater, Biores. Tech, Reports 19 (2022).
DOI: 10.1016/j.biteb.2022.101195
Google Scholar
[18]
S. Azeez, I. Saheed, F. Adekola, A. Jimoh, D. Aransiola, and Z. Abdulsalam, Box Behnken Design in the Optimization of Rhodamine B Adsorption onto Activated Carbon Prepared from Delonix regia Seeds and Pods, J. Turk. Chem. Soc. Sec. A: Chemistry 9 (2022) 209-226.
DOI: 10.18596/jotcsa.893472
Google Scholar
[19]
A.O. Ibrahim, A.O. Olagunju, S.O. Agboola, and O.S. Bello, Adsorption of amlodipine on surface-modified activated carbon derived from Delonix regia seed pod, J. Dispersion Sci. Technol. (2024) 1-13.
DOI: 10.1080/01932691.2024.2325397
Google Scholar
[20]
G.K. Latinwo, A.O. Alade, S.E. Agarry, and E.O. Dada, Process Optimization and Modeling the Adsorption of Polycyclic Aromatic-Congo Red Dye onto Delonix regia Pod-Derived Activated Carbon, Polycyclic Aromat. Compd. 41 (2019) 400-418.
DOI: 10.1080/10406638.2019.1591467
Google Scholar
[21]
A. Fisher, Sample Collection Methods, Atomic Spectrometric Methods of Analysis, Royal Society of Chemistry, 2025, 1, pp.1-11.
Google Scholar
[22]
ASTM, "Standard Test Method for Total Oil and Grease (TOG) and Total Petroleum Hydrocarbons (TPH) in Water and Wastewater with Solvent Extraction using Mid-IR Laser Spectroscopy," ASTM International, 2022.
DOI: 10.1520/d7678-17r22
Google Scholar
[23]
ASTM, "Standard Practice for Proximate Analysis of Coal and Coke," ASTM International, 2013.
Google Scholar
[24]
ASTM, "Standard Test Method for Determination of Iodine Number of Activated Carbon," ASTM International, 2014.
Google Scholar
[25]
T.A. Afolabi, and D.G. Adekanmi, Characterization of Native and Graft Copolymerized Albizia Gums and Their Application as a Flocculant, J. Polym. 2017 (2017) 1-8.
DOI: 10.1155/2017/3125385
Google Scholar
[26]
C. Ji, H. Yin, M. Zhou, Z. Sun, Y. Zhao, and L. Li, Adsorption of total petroleum hydrocarbon in groundwater by KOH-activated biochar loaded double surfactant-modified nZVI, Front. Mater. 10 (2023) 1-15.
DOI: 10.3389/fmats.2023.1234981
Google Scholar
[27]
U. Anwana Abel, G. Rhoda Habor, and O. Innocent Oseribho, Adsorption Studies of Oil Spill Clean-up Using Coconut Coir Activated Carbon (CCAC), Am. J. Chem. Eng. 8 (2020) 1-12.
DOI: 10.11648/j.ajche.20200802.11
Google Scholar
[28]
P. Sugumaran, V.P. Susan, P. Ravichandran, and S. Seshadri, Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod, J. Sustain. Energy Environ. 3 (2012) 125-132.
Google Scholar
[29]
C. Bläker, J. Muthmann, C. Pasel, and D. Bathen, Characterization of Activated Carbon Adsorbents – State of the Art and Novel Approaches, ChemBioEng Rev. 6 (2019) 119-138.
DOI: 10.1002/cben.201900008
Google Scholar
[30]
D. Bergna, T. Varila, H. Romar, and U. Lassi, Comparison of the Properties of Activated Carbons Produced in One-Stage and Two-Stage Processes, C 4 (2018) 41.
DOI: 10.3390/c4030041
Google Scholar
[31]
O.I. Alonge, P.A. Oreoluwa, A.P. Okediji, O.A. Oloruntoba, and I.O. Alabi, "Characterization and Optimization of Carbonization of Flamboyant Tree Pod." pp.1-8.
DOI: 10.1109/seb4sdg60871.2024.10629696
Google Scholar
[32]
G.K. Latinwo, A.O. Alade, S.E. Agarry, and E.O. Dada, Optimization of process parameters for the production of activated carbon from Delonix regia pod through chemical activation and carbonization process, Appl. J. Envir. Eng. Sci. 5 (2019) 75-98.
DOI: 10.1080/10406638.2019.1591467
Google Scholar
[33]
Y. Fan, H. Wang, L. Deng, Y. Wang, D. Kang, C. Li, and H. Chen, Enhanced adsorption of Pb (II) by nitrogen and phosphorus co-doped biochar derived from Camellia oleifera shells, Environ. Res. 191 (2020) 110030.
DOI: 10.1016/j.envres.2020.110030
Google Scholar
[34]
A. Eleryan, M. Hassaan, M.A. Nazir, S.S. Shah, S. Ragab, and A. El Nemr, Isothermal and kinetic screening of methyl red and methyl orange dyes adsorption from water by Delonix regia biochar-sulfur oxide (DRB-SO), Sci. Rep. 14 (2024) 1-16.
DOI: 10.1038/s41598-024-63510-0
Google Scholar
[35]
D. Pattnaik, S. Kumar, S. Bhuyan, and S. Mishra, "Effect of carbonization temperatures on biochar formation of bamboo leaves." p.012054.
DOI: 10.1088/1757-899x/338/1/012054
Google Scholar
[36]
Y. Lee, J. Park, C. Ryu, K.S. Gang, W. Yang, Y.-K. Park, J. Jung, and S. Hyun, Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C, Bioresour. Technol. 148 (2013) 196-201.
DOI: 10.1016/j.biortech.2013.08.135
Google Scholar
[37]
A. Olowofoyeku, D. Adekanmi, and C. Ugwuanyi, Seasonal Variations and Correlation Analysis of Physicochemical Properties, Heavy Metals, and Petroleum-Derived Compounds in Borehole Water from Eneka and Alode Communities, Rivers State, Nigeria, J. Appl. Sci. Environ. Manage. 29 (2025) 1-11.
DOI: 10.4314/jasem.v29i6.22
Google Scholar
[38]
D. Sivakumar, R. Parthiban, P.S. Kumar, and A. Saravanan, Synthesis and characterization of ultrasonic-assisted Delonix regia seeds: modelling and application in dye adsorption, Desalin. Water Treat. 173 (2020) 427-441.
DOI: 10.5004/dwt.2020.24820
Google Scholar
[39]
J. Utsev, R. Iwar, and K. Ifyalem, Adsorption of methylene blue from aqueous solution onto Delonix regia pod activated carbon: batch equilibrium isotherm, kinetic and thermodynamic studies, Agric. Wastes 4 (2020) 18-19.
DOI: 10.7176/cmr/11-4-04
Google Scholar
[40]
A. Esmaeili, and B. Saremnia, Comparison study of adsorption and nanofiltration methods for removal of total petroleum hydrocarbons from oil-field wastewater, J. Pet. Sci. Eng. 171 (2018) 403-413.
DOI: 10.1016/j.petrol.2018.07.058
Google Scholar
[41]
J.C. Onwuka, E.B. Agbaji, V.O. Ajibola, and F.G. Okibe, Kinetic studies of surface modification of lignocellulosic Delonix regia pods as sorbent for crude oil spill in water, J. Appl. Res. Technol. 14 (2016) 415-424.
DOI: 10.1016/j.jart.2016.09.004
Google Scholar
[42]
M.K. Nazal, M. Ilyas, D. Gijjapu, and N. Abuzaid, Treatment of water contaminated with petroleum hydrocarbons using a biochar derived from seagrass biomass as low-cost adsorbent: isotherm, kinetics and reusability studies, Sep. Sci. Technol. 57 (2022) 2358-2373.
DOI: 10.1080/01496395.2022.2058550
Google Scholar