Study of Temperature Effect on the Structure and Optical Properties of RIT- 62 Cu-MOFs

Article Preview

Abstract:

Metal organic frameworks are the materials of today’s generation and are widely used for their various physicochemical properties. MOFs are synthesized by various methods such chemical precipitation method, solgel method, hydrothermal method etc. To attain the required optoelectronic properties of MOFs, synthetic methods play a important role. In the present work, the synthesis of Cu-MOFs was carried out at 80 °C and 120 °C. The synthesized Cu-MOFs were labeled as RIT 62-Cu-MOF-1 and RIT 62-Cu-MOF-2. Both the Cu-MOFs were characterized by FTIR, UV-visible spectra. The FESEM of both Cu-MOFs indicated that spherical particles with 120 to 200 nms. of particle size. Tauc’s method was employed to compute the band gap of both Cu-MOFs. RIT 62-Cu-MOF-1 imparted 2.67 eV while RIT 62-Cu-MOF-2 imparted average of 2.06 eV off bandgap. 2.35 eV due to ligand-metal charge transfer observed through UV-visible spectra. Further, optimization of synthetic procedures to enhance the optical properties of Cu-MOFs.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Dhand, Chetna, Neeraj Dwivedi, Xian Jun Loh, Alice Ng Jie Ying, Navin Kumar Verma, Roger W. Beuerman, Rajamani Lakshminarayanan, and Seeram Ramakrishna. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. Rsc Advances. 5.127 (2015) 105003-105037.

DOI: 10.1039/c5ra19388e

Google Scholar

[2] Grossweiner, Leonard I. Photophysics. The science of photobiology. (1989) 1-45.

Google Scholar

[3] Adimule, Vinayak, Basappa C. Yallur, Sheetal R. Batakurki, and Adarsha Haramballi Jagadeesha Gowda. Microwave Assisted Synthesis of Cr doped Gd2O3 Nanostructures and Investigation on Morphology, Optical, Photoluminescence Properties. Nanoscience and Technology: An International Journal.

DOI: 10.1615/nanoscitechnolintj.2021039643

Google Scholar

[4] Adimule V., S.S. Nandi, B.C. Yallur, D. Bhowmik, and A.H. Jagadeesha. Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics. Materials Today Chemistry. 20 (2021) 100438.

DOI: 10.1016/j.mtchem.2021.100438

Google Scholar

[5] Adimule Vinayak, Basappa C. Yallur, Debdas Bhowmik, and Adarsha HJ Gowda. Dielectric properties of P3BT doped ZrY2O3/CoZrY2O3 nanostructures for low-cost optoelectronics applications. Transactions on Electrical and Electronic Materials. (2021) 1-16

DOI: 10.1007/s42341-021-00348-7

Google Scholar

[6] Challa Maalathi, Basappa C. Yallur, M. R. Ambika, and Vinayak Adimule. Influence of Nano Particles on Optical Properties of Cu-MOFs. Advanced Materials Research. 1173 (2022) 23-33.

DOI: 10.4028/p-vn4hd4

Google Scholar

[7] Maya Pai M., Sheetal R. Batakurki, Vinayak Adimule, and Basappa C. Yallur. Optical Graphene for Biosensor Application: A Review. Applied Mechanics and Materials. 908 (2022) 51-68.

DOI: 10.4028/p-rs3qal

Google Scholar

[8] Tilley, Richard JD. Colour and the optical properties of materials: an exploration of the relationship between light, the optical properties of materials and colour. John Wiley & Sons, 2010.

DOI: 10.1002/9780470974773

Google Scholar

[9] Adimule, Vinayak, Basappa C. Yallur, Malathi Challa, and Rajeev S. Joshi. Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon. 12 (2021) e08541

DOI: 10.1016/j.heliyon.2021.e08541

Google Scholar

[10] Adimule, Vinayak, Santosh S. Nandi, B. C. Yallur, Debdas Bhowmik, and Adarsha Haramballi Jagadeesha. Optical, Structural and Photoluminescence Properties of Gd x SrO: CdO Nanostructures Synthesized by Co Precipitation Method. Journal of Fluorescence. 31, 2 (2021) 487-499.

DOI: 10.1007/s10895-021-02683-7

Google Scholar

[11] Adimule, Vinayak, B. C. Yallur, Debdas Bhowmik, and Adarsha Haramballi Jagadeesha Gowda. Morphology, structural and photoluminescence properties of shaping triple semiconductor Y x CoO: ZrO 2 nanostructures. Journal of Materials Science: Materials in Electronics. 32, 9 (2021) 12164-12181.

DOI: 10.1007/s10854-021-05845-2

Google Scholar

[12] Adimule, Vinayak, Santosh S. Nandi, B. C. Yallur, and Nilophar Shaikh. CNT/graphene-assisted flexible thin-film preparation for stretchable electronics and superconductors. Sensors for Stretchable Electronics in Nanotechnology. (2021) 89-103.

DOI: 10.1201/9781003123781-7

Google Scholar

[13] Nandi, Santosh S., Anusha Suryavanshi, Vinayak Adimule, and Basappa C. Yallur. Fabrication of novel rare earth doped ionic perovskite nanomaterials of Sr0. 5, Cu0. 4, Y0. 1 and Sr0. 5 and Mn0. 5 for high power efficient energy harvesting photovoltaic cells. AIP Conference Proceedings. 2274, 1 (2020) 020005.

DOI: 10.1063/5.0022450

Google Scholar

[14] Adimule, Vinayak, Anusha Suryavanshi, Yallur BC, and Santosh S. Nandi. A Facile Synthesis of Poly (3‐octyl thiophene): Ni0. 4Sr0. 6TiO3 Hybrid Nanocomposites for Solar Cell Applications. Macromolecular Symposia. 392, 1 (2020) 2000001.

DOI: 10.1002/masy.202000001

Google Scholar

[15] Adimule V., Yallur B. C, Gowda, A. (2022). 'Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures. Analytical and Bioanalytical Electrochemistry. 14, 1 (2022) 1-17.

Google Scholar

[16] Adimule V, Yallur B.C., Batakurki S. R., Nandi S. S. Synthesis, Morphology and Enhanced Optical Properties of Novel GdxCo3O4 Nanostructures. Advanced Materials Research 1173 (2022) 71–82.

DOI: 10.4028/p-3pkhf6

Google Scholar

[17] Adimule V., Batakurki S., Yallur B. C. Enhanced photoluminescence, optical, structural properties of ZrO2-incorporated Sm2O3:Co3O4 nanocomposite and their applications in photocatalytic degradation of methylene blue. Journal of Materials Research. 37 (2022) 2396–2405.

DOI: 10.1557/s43578-022-00641-y

Google Scholar

[18] Vinayak Adimule, Vinay S. Bhat, Basappa C. Yallur, Adarsha H. J. Gowda, Paola De Padova, Gurumurthy Hegde and Arafat Toghan. Facile synthesis of novel SrO 0.5:MnO 0.5 bimetallic oxide nanostructure as a high- performance electrode material for supercapacitors. Nanomaterials and Nanotechnology. 12 (2022) 1-14

DOI: 10.1177/18479804211064028

Google Scholar

[19] a)R. Shashanka, Effect of Sintering Temperature on the Pitting Corrosion of Ball Milled Duplex Stainless Steel by using Linear Sweep Voltammetry. Anal. Bioanal. Electrochem. 10 (2018) 349-361. b). Pokropivny, V., Lohmus, R., Hussainova, I., Pokropivny, A., & Vlassov, S. Introduction to nanomaterials and nanotechnology. Vol. 1. Ukraine: Tartu University Press, 2007.

Google Scholar

[20] Nandi S. S., Adimule V., and Yallur B. C. (2022). Synthesis, Structural and Optical Properties of Co Doped Sm2O3 Nanostructures. In Advanced Materials Research. 1173 (2022) 59–69.

DOI: 10.4028/p-h1j61s

Google Scholar

[21] Adimule V., Batakurki S., Yallur B. C. Samarium-decorated ZrO2@SnO2 nanostructures, their electrical, optical and enhanced photoluminescence properties. J Mater Sci: Mater. Electron. 33, (2022) 18699–18715.

DOI: 10.1007/s10854-022-08718-4

Google Scholar

[22] Malathi Challa, M. R. Ambika, S. R. Usharani, Basappa C. Yallur, Vinayak Adimule. Enhancement of Band Gap Energy and Crystallinity of Cu-MOFs Due to Doping of Nano Metal Oxide. Advanced Materials Research. 1173 (2022) 13-22.

DOI: 10.4028/p-f9yx5h

Google Scholar

[23] Malathi Challa, Ambika M.R, Usharani S.R, Sheetal Batakurki, Basappa C. Yallur. Modulation of Optical Band Gap of 2-Amino Terephthalic Acid Cu-MOFs Doped with Ag2O and rGO. Advanced Materials Research. 1173 (2022) 35-45.

DOI: 10.4028/p-i3rcg6

Google Scholar

[24] Vinayak Adimule, Basappa C. Yallur, Sheetal R. Batakurki, Santosh S. Nandi. Synthesis, Morphology and Enhanced Optical Properties of Novel GdxCo3O4 Nanostructures. Advanced Materials Research. 1173 (2022) 71-82.

DOI: 10.4028/p-3pkhf6

Google Scholar

[25] Vinayak Adimule, Basappa C. Yallur, Debdas Bhowmik and Adarsha Haramballi Jagadeesha Gowda. Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructure's for Low Cost Optoelectronics Applications. Transaction on Electrical and Electronic Materials. 32 (2021) 12164-12181.

DOI: 10.1007/s42341-021-00348-7

Google Scholar

[26] Shashanka Rajendrachari, Bahaddureghatta E. Kumara Swamy, Sathish Reddy, Debasis Chaira, Synthesis of Silver Nanoparticles and their Applications Anal. Bioanal. Electrochem. 5 (2013) 455–466.

Google Scholar

[27] R. Shashanka, Volkan Murat YILMAZ, Abdullah Cahit Karaoglanli, Orhan Uzun. Investigation of activation energy and antibacterial activity of CuO nano-rods prepared by Tilia Tomentosa (Ihlamur) leaves. Moroccan Journal of Chemistry. 8, 2 (2020) 497-509.

Google Scholar

[28] R. Shashanka, Halil Esgin, Volkan Murat Yilmaz, Yasemin Caglar. Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cell. Journal of Science: Advanced Materials and Devices. 5 (2020) 185-191.

DOI: 10.1016/j.jsamd.2020.04.005

Google Scholar

[29] R. Shashanka, B.E. Kumara Swamy. Simultaneous electro‑generation and electro‑deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application. S N Applied Sciences. 2(5) (2020) 956.

DOI: 10.1007/s42452-020-2785-1

Google Scholar

[30] K.S. Kiran, D. Ramesh, R. Shashanka, Photocatalytic Degradation of Rhodamine B Dye by Nanocomposites: A Review. Applied Mechanics and Materials. 908 (2022) 119-129.

DOI: 10.4028/p-d1j831

Google Scholar

[31] Rayappa Shrinivas Mahale, Shamanth Vasanth, Hemanth Krishna, R. Shashanka, P.C. Sharath, N.V. Sreekanth. Electrochemical Sensor Applications of Nanoparticle Modified Carbon Paste Electrodes to Detect Various Neurotransmitters: A Review. Applied Mechanics and Materials. 908 (2022) 69-88.

DOI: 10.4028/p-mizm85

Google Scholar

[32] Shashanka Rajendrachari, Gururaj Kudur Jayaprakash, Anup Pandith, Abdullah Cahit Karaoglanli1, Orhan Uzun. Electrocatalytic investigation by improving the charge kinetics between carbon electrodes and dopamine using bio-synthesized CuO nanoparticles. Catalysts. 12, 9 (2022) 994.

DOI: 10.3390/catal12090994

Google Scholar

[33] R. Shashanka, A. C. Karaoglanli, Y. Ceylan, O. Uzun. A fast and robust approach for the green synthesis of spherical Magnetite (Fe3O4) nanoparticles by Tilia Tomentosa (Ihlamur) leaves and its antibacterial studies. Pharmaceutical Sciences. 26, 2 (2020) 175-183.

DOI: 10.34172/ps.2020.5

Google Scholar

[34] R. Shashanka. Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. Journal of the Iranian Chemical Society. 18, 2 (2021) 415-427.

DOI: 10.1007/s13738-020-02037-3

Google Scholar

[35] (a). Adimule Vinayak, Basappa C. Yallur, Vinutha Kamat, and P. Murali Krishna. Characterization studies of novel series of cobalt (II), nickel (II) and copper (II) complexes: DNA binding and antibacterial activity. Journal of Pharmaceutical Investigation. 51, 3 (2021) 347-359. (b). R. Shashanka, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoglanli. Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method. Physical Chemistry Research. 7, 4 (2019) 799-812.

DOI: 10.1007/s40005-021-00524-0

Google Scholar

[36] Vinayak Adimule, Basappa C. Yallur, Sheetal Batakurki, Chapter 4 - Design, synthesis, and in vitro anticancer activity of thiophene substituted pyridine derivatives, Recent Developments in the Synthesis and Applications of Pyridines, Elsevier (2023)127-143.

DOI: 10.1016/b978-0-323-91221-1.00008-7

Google Scholar

[37] a). R. Shashanka, D. Chaira, B.E. Kumara Swamy. Fabrication of yttria dispersed duplex stainless steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry. International Journal of Scientific & Engineering Research. 7 (2016) 1275-1285. b). R. S. Mahale, R. Shashanka, V. Shamanth, R. Vinaykumar. Voltammetric Determination of Various Food Azo Dyes Using Different Modified Carbon Paste Electrodes. 12 (4) (2022) 4557–4566.

DOI: 10.33263/briac124.45574566

Google Scholar

[38] R. Shashanka, B. E. Kumara Swamy. Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and its application as dopamine and hydrogen peroxide sensors. Physical Chemistry Research. 8, 1 (2020) 1-18.

Google Scholar

[39] R. Shashanka, Kevser Betül Ceylan. The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers, Biointerface Research in Applied Chemistry. 10, 4 (2020) 5951–5959.

DOI: 10.33263/briac104.951959

Google Scholar

[40] Anik Ü, Timur S, Dursun Z. Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchimica Acta. 186, 3 (2019) 1-15.

DOI: 10.1007/s00604-019-3321-0

Google Scholar

[41] Maalathi Challa, M. R. Ambika, S. R. Usharani, Basappa C. Yallur, Vinayak Adimule. Study on Optical Properties of Cu-MOF Nano Metal Oxide Composites. Applied Mechanics and Materials. 98 (2022) 19-28.

DOI: 10.4028/p-266wz9

Google Scholar

[42] Vinayak Adimule, Sheetal S. Batakurki, Basappa C. Yallur, Rangappa Keri. Enhanced photoluminescence, optical, structural properties of ZrO2-incorporated Sm2O3: Co3O4 nanocomposite and their applications in photocatalytic degradation of methylene blue. Journal of Materials Research. 37 (2022) 2396-2405.

DOI: 10.1557/s43578-022-00641-y

Google Scholar

[43] Karmakar A, Prabakaran V, Zhao D, Chua KJ. A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications. Applied energy. 269 (2020) 115070.

DOI: 10.1016/j.apenergy.2020.115070

Google Scholar

[44] Gupta N. K, Kim S, Bae J, Kim K. S. Chemisorption of hydrogen sulfide over copper-based metal–organic frameworks: methanol and UV-assisted regeneration. RSC advances. 11, 9 (2021) 4890-4900.

DOI: 10.1039/d0ra09017d

Google Scholar

[45] Samuel MS, Savunthari KV, Ethiraj S. Synthesis of a copper (II) metal–organic framework for photocatalytic degradation of rhodamine B dye in water. Environmental Science and Pollution Research. 28, 30 (2021) 40835-40843.

DOI: 10.1007/s11356-021-13571-9

Google Scholar

[46] Bauer S, Stock N. Implementation of a Temperature‐Gradient Reactor System for High‐Throughput Investigation of Phosphonate‐Based Inorganic–Organic Hybrid Compounds. Angewandte Chemie International Edition. 46, 36 (2007) 6857-6860.

DOI: 10.1002/anie.200701575

Google Scholar

[47] Iqbal B, Laybourn A, Zaheer M. Size-controlled synthesis of spinel nickel ferrite nanorods by thermal decomposition of a bimetallic Fe/Ni-MOF. Ceramics International. 47, 9 (2021) 12433-12441.

DOI: 10.1016/j.ceramint.2021.01.100

Google Scholar

[48] Wu X, Yang C, Ge J. Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresources and bioprocessing, 4,1 (2017) 1-8.

DOI: 10.1186/s40643-017-0154-8

Google Scholar

[49] Dai S, Nouar F, Zhang S, Tissot A, Serre C. One‐Step Room‐Temperature Synthesis of Metal (IV) Carboxylate Metal-Organic Frameworks. Angewandte Chemie. 133, 8 (2021) 4328-4334.

DOI: 10.1002/ange.202014184

Google Scholar

[50] Kumar Gyanendra, Dhanraj T. Masram. Sustainable synthesis of MOF-5@ GO nanocomposites for efficient removal of rhodamine B from water. ACS omega. 6,14 (2021) 9587-9599.

DOI: 10.1021/acsomega.1c00143

Google Scholar

[51] Ke Fei, Luhuan Wang, Junfa Zhu. Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Research, 86 (2015) 1834-1846.

DOI: 10.1007/s12274-014-0690-x

Google Scholar