[1]
F. Rozada, M. Otero, A. Morán, A.I. García, Adsorption of heavy metals onto sewage sludge-derived materials, Bioresour. Technol. 99 (2008) 6332-6338.
DOI: 10.1016/j.biortech.2007.12.015
Google Scholar
[2]
M. Imamoglu, O. Tekir, Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination. 228 (2008) 108-113.
DOI: 10.1016/j.desal.2007.08.011
Google Scholar
[3]
X. Pu, L. Yao, L. Yang, W. Jiang, X. Jiang, Utilization of industrial waste lithium-silicon-powder for the fabrication of novel nap zeolite for aqueous Cu(II) removal, J. Clean. Prod. 265 (2020) 121822.
DOI: 10.1016/j.jclepro.2020.121822
Google Scholar
[4]
E. Pehlivan, T. Altun, S. Parlayıcı, Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions, J. Hazard. Mater. 164 (2009) 982-986.
DOI: 10.1016/j.jhazmat.2008.08.115
Google Scholar
[5]
M.A. Abdul, S.O. Shittu, J.A. Randawa, M.S. Shehu, The cervical smear pattern in patients with chronic pelvic inflammatory disease, Niger. J. Clin. Pract. 12 (2009).
Google Scholar
[6]
T. Jiang, W. Liu, Y. Mao, L. Zhang, J. Cheng, M. Gong, Q. Zhao, Adsorption behavior of copper ions from aqueous solution onto graphene oxide–CdS composite, Chem. Eng. J. 259 (2015) 603-610.
DOI: 10.1016/j.cej.2014.08.022
Google Scholar
[7]
U. Erturk, C. Yerlikaya, N. Sivritepe, In vitro Phytoextraction Capacity of Blackberry for Copper and Zinc, Asian. J. Chem. 19 (2007) 2161-2168.
Google Scholar
[8]
F. Di Natale, A. Erto, A. Lancia, D. Musmarra, Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides, J. Hazard. Mater. 192 (2011) 1842-1850.
DOI: 10.1016/j.jhazmat.2011.07.021
Google Scholar
[9]
J. Theron, J.A. Walker, T.E. Cloete, Nanotechnology and water treatment: applications and emerging opportunities, Crit Rev Microbiol. 34 (2008) 43-69.
Google Scholar
[10]
R. Zare-Dorabei , R. Rahimi, A. Koohi, S. Zargari, Preparation and characterization of a novel tetrakis(4-hydroxyphenyl)porphyrin–graphene oxide nanocomposite and application in an optical sensor and determination of mercury ions, RSC Adv. (2015) 93310-93317.
DOI: 10.1039/c5ra17047h
Google Scholar
[11]
S.Y. Ding, M. Dong, Y.W. Wang, Y.T. Chen, H.Z. Wang, C.Y. Su, W. Wang, Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury (II), J Am Chem Soc. 138 (2016) 3031-3037.
DOI: 10.1021/jacs.5b10754
Google Scholar
[12]
D. Wu, L. Hu, Y. Wang, Q. Wei, L. Yan, T. Yan, B. Du, EDTA modified β-cyclodextrin/chitosan for rapid removal of Pb(II) and acid red from aqueous solution, J Colloid Interface Sci. 523 (2018) 56-64.
DOI: 10.1016/j.jcis.2018.03.080
Google Scholar
[13]
L. Cui, Y. Wang, L. Gao, L. Hu, L. Yan, Q. Wei, B. Du, EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property, Chem. Eng. J. 281 (2015) 1-10.
DOI: 10.1016/j.cej.2015.06.043
Google Scholar
[14]
E. Repo, R. Koivula, R. Harjula, M. Sillanpää, Effect of EDTA and some other interfering species on the adsorption of Co(II) by EDTA-modified chitosan, Desalination. 321 (2013) 93-102.
DOI: 10.1016/j.desal.2013.02.028
Google Scholar
[15]
B. Paulchamy, G. Arthi, B.D. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial, J Nanomed Nanotechnol. 6 (2015) 1.
DOI: 10.4172/2157-7439.1000253
Google Scholar
[16]
J. Jeon, Y.K. Kim, Ethylenediaminetetraacetic Acid Functionalization of Graphene Oxide for Fabrication of a Strong Laminated Film by Controlling its Colloidal, Assembly, and Ionic Cross-Linking Behaviors. Assembly, and Ionic Cross-Linking Behaviors, Appl. Surf. Sci. 611 (2023).
DOI: 10.2139/ssrn.4207510
Google Scholar
[17]
A. Dąbrowski, Adsorption—from theory to practice, Adv. Colloid Interface. Sci. 93 (2001) 135-224.
Google Scholar
[18]
H.K. Boparai, M. Joseph, D.M. O'Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater. 186 (2011) 458-465.
DOI: 10.1016/j.jhazmat.2010.11.029
Google Scholar
[19]
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem Soc Rev. 39 (2010) 228-240.
DOI: 10.1039/b917103g
Google Scholar
[20]
M. Bera, P. Gupta, P.K. Maji, Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry, J Nanoscience Nanotechno. 18 (2018) 902-912.
DOI: 10.1166/jnn.2018.14306
Google Scholar
[21]
X. Hu, Y. Yu, J. Zhou, L. Song, Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide, Nano. 9 (2014) 1450037.
DOI: 10.1142/s1793292014500374
Google Scholar
[22]
P. Bhawal, S. Ganguly, T.K. Chaki, N.C. Das, Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites, RSC Adv. 6 (2016) 20781-20790.
DOI: 10.1039/c5ra24914g
Google Scholar
[23]
C. Chen, Z. Jia, X. Wang, H. Lu, Z. Guan, C. Yang, Micro characterization and degradation mechanism of liquid silicone rubber used for external insulation, IEEE T Dielect El In. 22 (2015) 313-321.
DOI: 10.1109/tdei.2014.004188
Google Scholar
[24]
L. Liu, Q. Ma, J. Cao, Y. Gao, S. Han, Y. Liang, Y. Sun, Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment, Cancer Nanotechnol. 12 (2021) 1-31.
DOI: 10.1186/s12645-021-00087-7
Google Scholar
[25]
R.L. White, C.M. White, H. Turgut, A. Massoud, Z.R. Tian, Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles, J Taiwan Inst Chem E. 85 (2018) 18-28.
DOI: 10.1016/j.jtice.2018.01.036
Google Scholar
[26]
T. Guo, C. Bulin, Z. Ma, B. Li, Y. Zhang, B. Zhang, X. Ge, Mechanism of Cd(II) and Cu(II) adsorption onto few-layered magnetic graphene oxide as an efficient adsorbent, ACS Omega. 6 (2021) 16535-16545.
DOI: 10.1021/acsomega.1c01770
Google Scholar
[27]
A. Shafiee, S. Iravani, R.S. Varma, Graphene and graphene oxide with anticancer applications: Challenges and future perspectives, MedComm. 3 (2022) 118.
DOI: 10.1002/mco2.118
Google Scholar
[28]
T. Naseem, F. Bibi, S. Arif, M. Waseem, S. Haq, M.N. Azra, I. Zekker, Adsorption and kinetics studies of Cr (VI) by graphene oxide and reduced graphene oxide-zinc oxide nanocomposite, Molecules. 27 (2022) 7152.
DOI: 10.3390/molecules27217152
Google Scholar
[29]
A. Daochalermwong, A. Seubsai, Modification of Pineapple Leaves Fiber as Metal Ion Adsorbents, Doctoral dissertation, Kasetsart University (2019).
Google Scholar
[30]
G.W. Kajjumba, S. Emik, A. Öngen, H.K. Özcan, S. Aydın, Modelling of adsorption kinetic processes-errors, theory and application, Advanced sorption process applications. (2018) 1-19.
DOI: 10.5772/intechopen.80495
Google Scholar
[31]
W. Rudzinski, W. Plazinski, Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport, J. Phys. Chem. B. 110 (2006) 16514-16525.
DOI: 10.1021/jp061779n
Google Scholar
[32]
Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.
DOI: 10.1016/s0032-9592(98)00112-5
Google Scholar
[33]
K. Keawkim, A. Khamthip, Removal of Pb2+ ion from industrial wastewater by new efficient biosorbents of Oyster plant (Tradescantia spathacea Steam) and Negkassar leaf (Mammea siamensis T. Anderson), Chiang Mai J Sci. 45 (2018) 369-79.
Google Scholar
[34]
W. Plazinski, J. Dziuba, W. Rudzinski, Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity, Adsorption. 19 (2013) 1055-1064.
DOI: 10.1007/s10450-013-9529-0
Google Scholar
[35]
H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution, Appl. Surf. Sci. 279 (2013) 432-440.
DOI: 10.1016/j.apsusc.2014.02.049
Google Scholar