[1]
E. Y. Ardiansyah, Syafriadi, T. Tibri, M. E. Onwardana, dan Sungeng, "Potential of Serpentinite for Utilization of Mineral Fertilizer Raw Materials," J. Saintek ITM, vol. 32, no. 1, hal. 48–55, 2019.
DOI: 10.37369/si.v32i1.53
Google Scholar
[2]
I. Susanti, "Technologies and Materials for Carbon Dioxide Capture," Sci. Educ. Appl. J., vol. 1, no. 2, hal. 84–97, 2019.
DOI: 10.30736/SEAJ.V1I2.147
Google Scholar
[3]
H. M. S. Al-Maamary, H. A. Kazem, dan M. T. Chaichan, "Climate change: The game changer in the Gulf Cooperation Council Region," Renewable and Sustainable Energy Reviews, vol. 76. Elsevier Ltd, hal. 555–576, 2017.
DOI: 10.1016/j.rser.2017.03.048
Google Scholar
[4]
A. Fedoročková, M. Hreus, P. Raschman, dan G. Sučik, "Dissolution of Magnesium From Calcined Serpentinite in Hydrochloric Acid," Miner. Eng., vol. 32, hal. 1–4, Mei 2012.
DOI: 10.1016/J.MINENG.2012.03.006
Google Scholar
[5]
J. Li dan M. Hitch, "Mechanical activation of magnesium silicates for mineral carbonation, a review," Miner. Eng., vol. 128, hal. 69–83, Nov 2018.
DOI: 10.1016/j.mineng.2018.08.034
Google Scholar
[6]
X. Peng, W. Liu, W. Liu, P. Zhao, X. Yu, dan Y. Wang, "Fabrication of eco-friendly adsorbent derived from serpentine tailings for the removal of organic dyes," Colloids Surfaces A Physicochem. Eng. Asp., vol. 643, Jun 2022.
DOI: 10.1016/j.colsurfa.2022.128761
Google Scholar
[7]
Z. Pang, S. Jiang, C. Zhu, Y. Ma, dan T. Fu, "Mass transfer of chemical absorption of CO2 in a serpentine minichannel," Chem. Eng. J., vol. 414, Jun 2021.
DOI: 10.1016/j.cej.2021.128791
Google Scholar
[8]
P. Zhu, L. Y. Wang, D. Hong, G. R. Qian, dan M. Zhou, "A study of making synthetic oxy-fluoride construction material using waste serpentine and kaolin mining tailings," Int. J. Miner. Process., vol. 104–105, hal. 31–36, Mar 2012.
DOI: 10.1016/J.MINPRO.2011.12.003
Google Scholar
[9]
Z. Sun, L. Zheng, S. Zheng, dan R. L. Frost, "Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of Chromium(VI)," J. Colloid Interface Sci., vol. 404, hal. 102–109, Agu 2013.
DOI: 10.1016/J.JCIS.2013.04.027
Google Scholar
[10]
B. Z. Dlugogorski dan R. D. Balucan, "Dehydroxylation of serpentine minerals: Implications for mineral carbonation," Renew. Sustain. Energy Rev., vol. 31, hal. 353–367, Mar 2014.
DOI: 10.1016/J.RSER.2013.11.002
Google Scholar
[11]
I. Tebbiche, L. C. Pasquier, G. Mercier, J. F. Blais, dan S. Kentish, "Mineral carbonation with thermally activated serpentine; the implication of serpentine preheating temperature and heat integration," Chem. Eng. Res. Des., vol. 172, hal. 159–174, Agu 2021.
DOI: 10.1016/j.cherd.2021.06.002
Google Scholar
[12]
F. Goff et al., "Evaluation of ultramafic deposits in the Eastern United States and Puerto Rico as sources of magnesium for carbon dioxide sequestration," Apr 2000.
DOI: 10.2172/754045
Google Scholar
[13]
M.M.F. Hasan, M. S. Zantye, dan M. K. Kazi, "Challenges and Opportunities in Carbon Capture, Utilization and Storage: A Process Systems Engineering Perspective," Comput. Chem. Eng., vol. 166, Okt 2022.
DOI: 10.1016/j.compchemeng.2022.107925
Google Scholar
[14]
A.M.M. Vargas dan T.A.M. Lopes, "Activated carbons from flamboyant pods: New types of adsorbents and application to laundry effluents," J. Water Process Eng., vol. 36, Agu 2020.
DOI: 10.1016/J.JWPE.2020.101277
Google Scholar
[15]
M. Lutfi, H. Antono, A. Wahyudi, dan R. Damayanti, "Adsorption Ability of Synthetic Zeolite Compared with Activated Serpentine Against CO2," J. Stat., vol. 16, no. 2, hal. 61–75, 2016.
Google Scholar
[16]
C.Y. Cao, C. H. Liang, Y. Yin, dan L. Y. Du, "Thermal activation of serpentine for adsorption of cadmium," J. Hazard. Mater., vol. 329, hal. 222–229, Mei 2017.
DOI: 10.1016/J.JHAZMAT.2017.01.042
Google Scholar
[17]
J. W. Lee, S. Kim, I. Torres Pineda, dan Y. T. Kang, "Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria," Renew. Sustain. Energy Rev., vol. 138, Mar 2021.
DOI: 10.1016/j.rser.2020.110524
Google Scholar
[18]
P. Karunaratne, G. F.-I. C. On, dan U. 2015, "Non-Asbestos form building materials for Sustainable City Planning in Sri Lanka," in Proceedings of the International Conference on "Cities, Peoples and Places', 2015, hal. 583–600.
Google Scholar
[19]
F. C. Ballotin et al., "Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production," Int. J. Miner. Metall. Mater., vol. 27, no. 1, hal. 46–54, Jan 2020.
DOI: 10.1007/S12613-019-1891-9
Google Scholar
[20]
G. D. Değermenci, N. Değermenci, N. Emin, dan E. Aşıkuzun, "Characterization of Mg-rich natural serpentine clay mineral and removal of reactive blue 19 from aqueous solutions," EQA - Int. J. Environ. Qual., vol. 47, hal. 40–55, Mei 2022.
Google Scholar
[21]
I. Tebbiche, L.-C. Pasquier, G. Mercier, J.-F. Blais, dan S. Kentish, "Thermally activated serpentine leaching under flue gas conditions in a bubble column reactor operated at ambient pressure and temperature," Hydrometallurgy, vol. 195, 2020.
DOI: 10.1016/j.hydromet.2020.105391
Google Scholar
[22]
O. R. R. D. Carmignano, S. S. Vieira, P. R. G. Brandão, A. C. Bertoli, dan R. M. Lago, "Serpentinites: Mineral Structure, Properties and Technological Applications," J. Braz. Chem. Soc., vol. 31, no. 1, hal. 2–14, 2020.
DOI: 10.21577/0103-5053.20190215
Google Scholar