[1]
M. P. Anderson, D. J. Srolovitz, G. S. Grest and P.S. Sahni, Computer simulation of grain growthI. Kinetics, Acta Metall., 32 (1984) 783-792.
DOI: 10.1016/0001-6160(84)90151-2
Google Scholar
[2]
D. J. Srolovitz, M. P. Anderson, P. S. Sahni and G. S. Grest, Computer simulation of graingrowth: II. Grain size distribution, topology, and local dynamics, Acta Metall., 32 (1984A) 793- 802.
DOI: 10.1016/0001-6160(84)90152-4
Google Scholar
[3]
D. J. Srolovitz, M. P. Anderson, G. S. Grest, P. S. Sahni, Computer Simulation of grain growthIII. Influence of a particle dispersion, Acta. Metall., 32 (1984) 1429-1438.
DOI: 10.1016/0001-6160(84)90089-0
Google Scholar
[4]
R. D. Doherty, D. J. Srolovitz, A. Rollett and M. P. Anderson, On the volume fraction dependence of particle limited grain growth, Scripta Mater., 21 (1987) 675-679.
DOI: 10.1016/0036-9748(87)90383-8
Google Scholar
[5]
M. P. Anderson, G. S. Grest and D. J. Srolovitz, Computer simulation of grain growth in three dimensions, Philosophical Magazine, B59 (1989) 293-329.
DOI: 10.1080/13642818908220181
Google Scholar
[6]
C. S. Smith, Trans. A.I.M.E, 175 (1948) 15.
Google Scholar
[7]
P. Manohar, M. Ferry and T. Chandra, Five decades of the Zener equation, ISIJ Int., 38 (1998) 913-924.
DOI: 10.2355/isijinternational.38.913
Google Scholar
[8]
F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Second edition (2005) (Great Britain: Pergamon, Elsevier).
Google Scholar
[9]
K. G. F. Janssens, D. Raabe, E. Kozeschnik, M. A. Miodownik and B. Nestler, Computational Materials Engineering - An introduction to Microstructure Evolution, First edition (2007), (Amsterdam: Elsevier).
Google Scholar
[10]
E. A. Holm, J. A. Glazier, D. J. Srolovitz and G. S. Grest, Effects of lattice anisotropy and temperature on domain growth in the 2-dimensional Potts-model, Physical Review A, 43 (1991) 2662 - 2668.
DOI: 10.1103/physreva.43.2662
Google Scholar
[11]
A. D. Rollett, P. Manohar, The Monte Carlo Method, in: D. Raabe, F. Roters, F. Barlat, L. Q. Chen (Eds.), Continuum Scale Simulation of Engineering Materials: FundamentalsMicrostructures-Process Applications, Wiley-VCH Verlag-GmbH, 2004, pp.76-111
DOI: 10.1002/3527603786
Google Scholar
[12]
M. Miodownik, J. W. Martin and A. Cerezo, Mesoscale simulations of particle pinning, Phil. Mag. A79 (1999), 203 - 222.
DOI: 10.1080/01418619908214284
Google Scholar
[13]
D. Zollner, A new point of view to determine the simulation temperature for the Potts model simulation of grain growth, Comp. Material Sc., 86 (2014) 99-107.
DOI: 10.1016/j.commatsci.2014.01.044
Google Scholar
[14]
K R Phaneesh, Anirudh Bhat, Gautam Mukherjee and K T Kashyap On the Zener limit of grain growth through 2D Monte Carlo simulation, Comp. Material Sc., 58 (2012) 188-191.
DOI: 10.1016/j.commatsci.2012.02.013
Google Scholar
[15]
M. Miodownik, E. A. Holm, G. N. Hassold, Highly parallel computer simulations of particle pinning: Zener vindicated, Scripta Mater., 42 (2000) 1173-1177.
DOI: 10.1016/s1359-6462(00)00354-7
Google Scholar
[16]
L. C. Stearns, M. P. Harmer, Particle-inhibited grain growth in Al2O3-SiC: I, Experimental results, J. Am. Ceram. Soc., 79 (1996) 3013-3019.
DOI: 10.1111/j.1151-2916.1996.tb08071.x
Google Scholar