[1]
Bao, Y., Wierzbicki, T., 2004. Past developments, current applications and trends in the cross wedge rolling process. Int. J. Mach. Tools Manuf. 33, 367–400.
Google Scholar
[2]
Benzerga, A.A., Surovik, D. Optimum working conditions in the cross rolling of stepped shafts. J. Mech. Work. Technol. 17 (3), 31–46.
Google Scholar
[3]
Brunig, M., Wang, B., Gerke, S., 2015. Stress state dependence of ductile damage and fracture behavior: experiments and numerical simulations. Eng. Fract. Mech. 141, 152–169.
DOI: 10.1016/j.engfracmech.2015.05.022
Google Scholar
[4]
Cao, T.S., Bobadilla, C., Montmitonnet, P., Bouchard, P.O., 2015. Influence analysis of wedging tip fillet for forming 4Cr9Si2 valve. J. Mech. Eng. 50, 93–99.
DOI: 10.3901/jme.2014.24.093
Google Scholar
[5]
Daly, M., Burnett, T.L., Leonard, F., Kelley, R., Withers, P.J., Sherry, A.H., 2017. Development of a warm cross wedge rolling process using FEA and downsized experimental trials. Prod. Eng. Res. Dev.
DOI: 10.1007/s11740-012-0379-5
Google Scholar
[6]
Danno, A., Awano, T., 1976. A new parameter for modelling three-dimensional damage evolution validated by synchrotron tomography. Acta Mater. 61, 7616–7623.
DOI: 10.1016/j.actamat.2013.08.065
Google Scholar
[7]
Dong, Y., Tagavi, K.A., Lovell, M.R., Deng, Z., 2000. A triaxiality and Lode parameter dependent ductile fracture criterion. Eng. Fract. Mech. 128, 121–138.
DOI: 10.1016/j.engfracmech.2014.07.010
Google Scholar
[8]
Dunand, M., Mohr, D., 2014. The establishment of a failure criterion in cross wedge rolling. J. Mech. Phys. Solids 89, 133–153.
Google Scholar
[9]
Farrugia, D.C.J., 2009. Prediction and avoidance of high temperature damage in long product hot rolling. J. Mater. Technol. 177, 486–492.
DOI: 10.1016/j.jmatprotec.2006.03.236
Google Scholar
[10]
Foster, A.D., Lin, J., Farrugia, D.C.J., Dean, T.A., 2011. Damage initiation and growth in metals Comparison between modeling and tomography experiments. Int. J. Damage Mech. 20, 113–129.
Google Scholar
[11]
Fu, X.P., Dean, T.A., 1993. A comparative study on various ductile crack formation criteria. J. Eng. Mater. Technol. 126, 314–324.
Google Scholar
[12]
Hayama, M., 1979. 2012. On the path-dependence of the fracture locus in ductile materials- analysis. Int. J. Plast. 37, 157–170.
Google Scholar
[13]
Hu, Z., Yang, C., Brenner, D., 2012. Development of part rolling technology in China. J. Mech. Eng. 48, 8–12.
Google Scholar
[14]
Huang, J., Liu, J., Wang, B., Hu, Z., 2014. A comparative study of three ductile damage approaches for fracture prediction in cold forming processes. J. Mater. Process. Technol. 216, 385–404.
Google Scholar
[15]
Kiran, R., Khandelwal, K., 2014. Analysis of stress in cross wedge rolling with application to failure. Int. J. Mech. Sci. 42, 1233–1253.
Google Scholar
[16]
Li, Q., Lovell, M.R., 2004. Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities. Int. J. Adv. Manuf. Technol. 24, 180–189.
Google Scholar