[1]
F. Farjadian et al., "Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review," ChemistrySelect, vol. 5, no. 33, pp.10200-10219, 2020.
DOI: 10.1002/slct.202002501
Google Scholar
[2]
A. Abbas et al., "One-step green synthesis of biomass-derived graphene quantum dots as a highly selective optical sensing probe," Materials Today Chemistry, vol. 30, p.101555, 2023.
DOI: 10.1016/j.mtchem.2023.101555
Google Scholar
[3]
F. Zhang et al., "Recent advances on graphene: Synthesis, properties and applications," Composites Part A: Applied Science and Manufacturing, vol. 160, p.107051, 2022.
DOI: 10.1016/j.compositesa.2022.107051
Google Scholar
[4]
R. Hidayat, S. Wahyuningsih, and A. Ramelan, "Simple synthesis of rGO (reduced graphene oxide) by thermal reduction of GO (graphene oxide)," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 858, no. 1: IOP Publishing, p.012009.
DOI: 10.1088/1757-899x/858/1/012009
Google Scholar
[5]
R. Hidayat, S. Wahyuningsih, and G. Fadillah, "Green synthesis approach to produce TiO2/rGO nanocomposite as voltammetric sensor for monitoring trace level bisphenol-A," Materials Science and Engineering: B, vol. 286, p.116083, 2022.
DOI: 10.1016/j.mseb.2022.116083
Google Scholar
[6]
H. Saleem, A. Saud, and S. J. Zaidi, "Sustainable Preparation of Graphene Quantum Dots from Leaves of Date Palm Tree," ACS omega, vol. 8, no. 31, pp.28098-28108, 2023.
DOI: 10.1021/acsomega.3c00694
Google Scholar
[7]
C. Sun and J. Koziński, "Ignition behaviour of pulp and paper combustible wastes," Fuel, vol. 79, no. 13, pp.1587-1593, 2000.
DOI: 10.1016/s0016-2361(00)00023-5
Google Scholar
[8]
R. G. Charles et al., "Platinized counter-electrodes for dye-sensitised solar cells from waste thermocouples: A case study for resource efficiency, industrial symbiosis and circular economy," Journal of Cleaner Production, vol. 202, pp.1167-1178, 2018.
DOI: 10.1016/j.jclepro.2018.08.125
Google Scholar
[9]
A. Abbas, Q. Liang, S. Abbas, M. Liaqat, S. Rubab, and T. A. Tabish, "Eco-friendly sustainable synthesis of graphene quantum dots from biowaste as a highly selective sensor," Nanomater., vol. 12, no. 20, p.3696, 2022.
DOI: 10.3390/nano12203696
Google Scholar
[10]
C. Hadad et al., "Graphene quantum dots: From efficient preparation to safe renal excretion," Nano research, vol. 14, pp.674-683, 2021.
DOI: 10.1007/s12274-020-3096-y
Google Scholar
[11]
H. S. Al Ghamdi and A. A. Al-Ghamdi, "Opening band gap of multi-color graphene quantum dots using D-fructose as a green precursor," Alexandria Engineering Journal, vol. 79, pp.155-163, 2023.
DOI: 10.1016/j.aej.2023.08.019
Google Scholar
[12]
F. Mahmood, C. Zhang, Y. Xie, D. Stalla, J. Lin, and C. Wan, "Transforming lignin into porous graphene via direct laser writing for solid-state supercapacitors," RSC Adv., vol. 9, no. 39, pp.22713-22720, 2019.
DOI: 10.1039/c9ra04073k
Google Scholar
[13]
Y. Zhao, M. Wen, C. He, C. Liu, Z. Li, and Y. Liu, "Preparation of graphene by catalytic pyrolysis of lignin and its electrochemical properties," Mater. Lett., vol. 274, p.128047, 2020.
DOI: 10.1016/j.matlet.2020.128047
Google Scholar
[14]
Y. Wang et al., "Preparation of novel biochar containing graphene from waste bamboo with high methylene blue adsorption capacity," Diamond Relat. Mater., vol. 125, p.109034, 2022.
DOI: 10.1016/j.diamond.2022.109034
Google Scholar
[15]
K. K. Yadav, R. Wadhwa, N. Khan, and M. Jha, "Efficient metal-free supercapacitor based on graphene oxide derived from waste rice," Current Research in Green and Sustainable Chemistry, vol. 4, p.100075, 2021.
DOI: 10.1016/j.crgsc.2021.100075
Google Scholar
[16]
S. Sankar et al., "Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes," New J. Chem., vol. 41, no. 22, pp.13792-13797, 2017.
DOI: 10.1039/c7nj03136j
Google Scholar
[17]
T. Somanathan, K. Prasad, K. Ostrikov, A. Saravanan, and V. Mohana Krishna, "Graphene oxide synthesis from agro waste," Nanomater., vol. 5, no. 2, pp.826-834, 2015.
DOI: 10.3390/nano5020826
Google Scholar
[18]
S. Pandey et al., "3D graphene nanosheets from plastic waste for highly efficient HTM free perovskite solar cells," Nanoscale Advances, vol. 3, no. 16, pp.4726-4738, 2021.
DOI: 10.1039/d1na00183c
Google Scholar
[19]
N. A. El Essawy, S. M. Ali, H. A. Farag, A. H. Konsowa, M. Elnouby, and H. A. Hamad, "Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution," Ecotoxicology and environmental safety, vol. 145, pp.57-68, 2017.
DOI: 10.1016/j.ecoenv.2017.07.014
Google Scholar
[20]
C. Wang, D. Li, T. Zhai, H. Wang, Q. Sun, and H. Li, "Direct conversion of waste tires into three-dimensional graphene," Energy Storage Materials, vol. 23, pp.499-507, 2019.
DOI: 10.1016/j.ensm.2019.04.014
Google Scholar
[21]
B. Prakoso et al., "Facile synthesis of battery waste-derived graphene for transparent and conductive film application by an electrochemical exfoliation method," RSC Adv., vol. 10, no. 17, pp.10322-10328, 2020.
DOI: 10.1039/d0ra01100b
Google Scholar
[22]
R. S. Tade and P. O. Patil, "Green synthesis of fluorescent graphene quantum dots and its application in selective curcumin detection," Current Applied Physics, vol. 20, no. 11, pp.1226-1236, 2020.
DOI: 10.1016/j.cap.2020.08.006
Google Scholar
[23]
K. H. Adolfsson, S. Hassanzadeh, and M. Hakkarainen, "Valorization of cellulose and waste paper to graphene oxide quantum dots," RSC Adv., vol. 5, no. 34, pp.26550-26558, 2015.
DOI: 10.1039/c5ra01805f
Google Scholar
[24]
A. K. Prabhakar, M. Ajith, A. Ananthanarayanan, P. Routh, B. C. Mohan, and A. M. Thamizhchelvan, "Ball-milled graphene quantum dots for enhanced anti-cancer drug delivery," OpenNano, vol. 8, p.100072, 2022.
DOI: 10.1016/j.onano.2022.100072
Google Scholar
[25]
G. Fadillah, R. Hidayat, and T. A. Saleh, "Hydrothermal assisted synthesis of titanium dioxide nanoparticles modified graphene with enhanced photocatalytic performance," Journal of Industrial and Engineering Chemistry, vol. 113, pp.411-418, 2022.
DOI: 10.1016/j.jiec.2022.06.016
Google Scholar
[26]
R. Hidayat, A. Saputra, and M. Fitria, "Material MOFs (Metal Organic Frameworks) dalam Aplikasi Fotokatalisis: Mini Review," Indonesian J. Chem. Anal., vol. 5, no. 2, pp.120-137, 2022.
DOI: 10.20885/ijca.vol5.iss2.art7
Google Scholar
[27]
R. Hidayat, G. Fadillah, and S.-I. Ohira, "Glass tube-coated TiO2 nanostructure for degradation of methylene blue: an experimental and design of column photocatalytic reactor," Indonesian J. Chem. Anal., vol. 6, no. 1, pp.52-62, 2023.
DOI: 10.20885/ijca.vol6.iss1.art6
Google Scholar
[28]
G. Fadillah, R. Hidayat, and T. A. Saleh, "Synthesis of magnetic manganese-based adsorbent for rapid adsorption of selenium ions from water," Environmental Nanotechnology, Monitoring & Management, vol. 20, p.100796, 2023/12/01/ 2023.
DOI: 10.1016/j.enmm.2023.100796
Google Scholar
[29]
A. C. Ferrari and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nature nanotechnology, vol. 8, no. 4, pp.235-246, 2013.
DOI: 10.1038/nnano.2013.46
Google Scholar
[30]
Z. Li, L. Deng, I. A. Kinloch, and R. J. Young, "Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres," Prog. Mater Sci., p.101089, 2023.
DOI: 10.1016/j.pmatsci.2023.101089
Google Scholar
[31]
A. Suryawanshi et al., "Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions," Nanoscale, 10.1039/C4NR02494J vol. 6, no. 20, pp.11664-11670, 2014.
DOI: 10.1039/C4NR02494J
Google Scholar
[32]
S. Reagen et al., "Synthesis of highly near-infrared fluorescent graphene quantum dots using biomass-derived materials for in vitro cell imaging and metal ion detection," ACS Applied Materials & Interfaces, vol. 13, no. 37, pp.43952-43962, 2021.
DOI: 10.1021/acsami.1c10533
Google Scholar
[33]
Z. Wang et al., "Biomass-derived nitrogen doped graphene quantum dots with color-tunable emission for sensing, fluorescence ink and multicolor cell imaging," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 227, p.117671, 2020.
DOI: 10.1016/j.saa.2019.117671
Google Scholar
[34]
Z.-H. Xiong, Y.-N. Zou, X.-C. Cao, and Z.-H. Lin, "Color-tunable fluorescent nitrogen-doped graphene quantum dots derived from pineapple leaf fiber biomass to detect Hg2+," Chinese Journal of Analytical Chemistry, vol. 50, no. 2, pp.69-76, 2022/02/01/ 2022.
DOI: 10.1016/j.cjac.2021.10.003
Google Scholar
[35]
Y. Wang et al., "Synthesis of corn straw-based graphene quantum dots (GQDs) and their application in PO43- detection," J. Environ. Chem. Eng., vol. 10, no. 2, p.107150, 2022/04/01/ 2022.
DOI: 10.1016/j.jece.2022.107150
Google Scholar
[36]
L. Xu, C. Cheng, C. Yao, and X. Jin, "Flexible supercapacitor electrode based on lignosulfonate-derived graphene quantum dots/graphene hydrogel," Org. Electron., vol. 78, p.105407, 2020/03/01/ 2020.
DOI: 10.1016/j.orgel.2019.105407
Google Scholar
[37]
W. Wang et al., "One-pot facile synthesis of graphene quantum dots from rice husks for Fe3+ sensing," Ind. Eng. Chem. Res., vol. 57, no. 28, pp.9144-9150, 2018.
DOI: 10.1021/acs.iecr.8b00913.s001
Google Scholar
[38]
S.-C. Shi and X.-A. Chen, "Cellulose circular economy: Amino-functionalized graphene quantum dots as highly sensitive vaccine indicators," Industrial Crops and Products, vol. 206, p.117694, 2023/12/15/ 2023.
DOI: 10.1016/j.indcrop.2023.117694
Google Scholar
[39]
Z. Ding, X. Mei, and X. Wang, "All-lignin converted graphene quantum dot/graphene nanosheet hetero-junction for high-rate and boosted specific capacitance supercapacitors," Nanoscale Advances, vol. 3, no. 9, pp.2529-2537, 2021.
DOI: 10.1039/d0na01024c
Google Scholar
[40]
Y.-P. Zhang et al., "Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe3+ ion and bioimaging," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 217, pp.60-67, 2019.
DOI: 10.1016/j.saa.2019.03.044
Google Scholar
[41]
A. N. Mohan and M. B, "Biowaste derived graphene quantum dots interlaced with SnO2 nanoparticles – a dynamic disinfection agent against Pseudomonas aeruginosa," New J. Chem., 10.1039/C9NJ00379G vol. 43, no. 34, pp.13681-13689, 2019.
DOI: 10.1039/C9NJ00379G
Google Scholar
[42]
K. Luo, X. Luo, Y. Wu, Z. Liang, X. Kang, and Y. Wen, "Synthesis of graphene quantum dots with temperature-sensitive properties from sea rice for rapid and highly selective detection of 4-nitrophenol," Diamond Relat. Mater., vol. 135, p.109849, 2023/05/01/ 2023.
DOI: 10.1016/j.diamond.2023.109849
Google Scholar
[43]
T. A. Saleh and G. Fadillah, "Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules," TrAC Trends in Analytical Chemistry, vol. 120, p.115660, 2019/11/01/ 2019.
DOI: 10.1016/j.trac.2019.115660
Google Scholar
[44]
N. Sohal, S. Singla, S. J. Malode, S. Basu, B. Maity, and N. P. Shetti, "Bioresource-Based Graphene Quantum Dots and Their Applications: A Review," ACS Applied Nano Materials, vol. 6, no. 13, pp.10925-10943, 2023/07/14 2023.
DOI: 10.1021/acsanm.3c02185
Google Scholar
[45]
T. H. Le, H. J. Lee, J. H. Kim, and S. J. Park, "Highly Selective Fluorescence Sensor Based on Graphene Quantum Dots for Sulfamethoxazole Determination," (in eng), Materials (Basel), vol. 13, no. 11, Jun 1 2020.
DOI: 10.3390/ma13112521
Google Scholar
[46]
X. Chu, P. Dai, Y. Dong, W. Sun, L. Bai, and W. Zhang, "The acetic acid gas sensing properties of graphene quantum dots (GQDs)–ZnO nanocomposites prepared by hydrothermal method," Journal of Materials Science: Materials in Electronics, vol. 28, no. 24, pp.19164-19173, 2017/12/01 2017.
DOI: 10.1007/s10854-017-7873-7
Google Scholar
[47]
S. Shao, W. Wang, K. Zhou, F. Jiang, H. Wu, and R. Koehn, "GQDs-TiO2 heterojunction based thin films for volatile organic compounds sensor with excellent performance at room temperature," Materials Letters, vol. 186, pp.193-197, 2017/01/01/ 2017.
DOI: 10.1016/j.matlet.2016.10.012
Google Scholar
[48]
M. Kosuvun et al., "Nanoflowers on Microporous Graphene Electrodes as a Highly Sensitive and Low-Cost As(III) Electrochemical Sensor for Water Quality Monitoring," Sensors, vol. 23, no. 6, p.3099, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/6/3099.
DOI: 10.3390/s23063099
Google Scholar
[49]
M. E. E. Alahi, A. Nag, S. C. Mukhopadhyay, and L. Burkitt, "A temperature-compensated graphene sensor for nitrate monitoring in real-time application," Sensors and Actuators A: Physical, vol. 269, pp.79-90, 2018/01/01/ 2018.
DOI: 10.1016/j.sna.2017.11.022
Google Scholar
[50]
M. Shehab, S. Ebrahim, and M. Soliman, "Graphene quantum dots prepared from glucose as optical sensor for glucose," Journal of Luminescence, vol. 184, pp.110-116, 2017/04/01/ 2017.
DOI: 10.1016/j.jlumin.2016.12.006
Google Scholar
[51]
G. Fadillah et al., "Highly sensitive photoelectrochemical sensor based rGO/CuI-modified glassy carbon electrode for monitoring chloramphenicol," Inorganic Chemistry Communications, vol. 157, p.111428, 2023/11/01/ 2023.
DOI: 10.1016/j.inoche.2023.111428
Google Scholar
[52]
Z. Li et al., "Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon," Nanoscale, 10.1039/C8NR06986G vol. 10, no. 48, pp.22871-22883, 2018.
DOI: 10.1039/C8NR06986G
Google Scholar
[53]
V. B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E. R. Mbuta, and A. u. khan, "Graphene synthesis, characterization and its applications: A review," Results in Chemistry, vol. 3, p.100163, 2021/01/01/ 2021.
DOI: 10.1016/j.rechem.2021.100163
Google Scholar
[54]
F. Shi and Q. Liu, "Recent Advances on the Application of Graphene Quantum Dots in Energy Storage," (in eng), Recent Pat Nanotechnol, vol. 15, no. 4, pp.298-309, 2021.
DOI: 10.2174/1872210515666210120115159
Google Scholar
[55]
X. Fang et al., "Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction," Physical Chemistry Chemical Physics, 10.1039/C6CP06953C vol. 19, no. 8, pp.6057-6063, 2017.
DOI: 10.1039/C6CP06953C
Google Scholar
[56]
M. R. Younis, G. He, J. Lin, and P. Huang, "Recent Advances on Graphene Quantum Dots for Bioimaging Applications," (in eng), Front Chem, vol. 8, p.424, 2020.
DOI: 10.3389/fchem.2020.00424
Google Scholar
[57]
R. G. Bai and G. A. Husseini, "Chapter 11 - Graphene-based drug delivery systems," in Biomimetic Nanoengineered Materials for Advanced Drug Delivery, A. R. Unnithan, A. R. K. Sasikala, C. H. Park, and C. S. Kim Eds.: Elsevier, 2019, pp.149-168.
DOI: 10.1016/b978-0-12-814944-7.00011-4
Google Scholar