Evaluation of the Antibacterial Activity of Pinostrobin Derivative Compounds from Ethylation and Allylation Reactions

Article Preview

Abstract:

Temu Kunci (Kaempferia pandurata Roxb.) is one of the plants from the Zingiberaceae family that contains secondary metabolites derived from flavonoids. Studies on the bioactivity of flavonoid compounds from this species have shown various biological activities such as antibacterial, antioxidant, antiviral, antitumor, antipyretic, anti-inflammatory, analgesic, and insecticidal properties. Pinostrobin (5-hydroxy-7-methoxy flavanone) (1) is the major flavonoid found in the rhizomes of this plant and has been successfully derivatized through ethylation and allylation reactions. Two compounds were obtained from the ethylation reaction, namely 5-ethoxy-7-methoxy flavanone (2) and 4'-ethoxy-6'-methoxy chalcone (3), while from the allylation reaction, 5-allyloxy-7-methoxy flavanone (4) and 6-allyl-7-methoxy flavanone (5) were obtained. Compounds 2, 3, 4, and 5 were tested for their antibacterial activity against the Gram-positive bacterium Staphylococcus aureus ATCC 25923 and the Gram-negative bacterium Escherichia coli ATCC 25922 using the agar diffusion method. The results of the inhibition zone measurements showed that compounds 2, 3, 4, and 5 were not active against S. aureus ATCC 25923 and E. coli ATCC 25922.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 14)

Pages:

63-68

Citation:

Online since:

January 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Chahyadi, R. Hartati, K.R. Wirasutisna, Boesenbergia pandurata Roxb., an Indonesian medicinal plant: Phytochemistry, biological activity, plant biotechnology, Procedia Chem. 13 (2014)13-37.

DOI: 10.1016/j.proche.2014.12.003

Google Scholar

[2] C. W. Lee, H. S. Kim, H. K. Kim, J. W. Kim, J. H. Yoon, Y. Cho, Inhibitory Effect of Panduratin A Isolated from Kaempferia panduarata Roxb. on Melanin Biosynthesis, Phytother Res. 1604 (2010) 1600–1604.

DOI: 10.1002/ptr.3163

Google Scholar

[3] S. Kumar, A. K. Pandey, Chemistry and Biological Activities of Flavonoids : An Overview, Sci. World J. 2013 (2013) 1-17.

Google Scholar

[4] L. E. Alcaraz, S.E. Blanco, O. N. Puig, F. Tomas, F. H. Ferretti, Antibacterial Activity of Flavonoids Against Methicillin-resistant Staphylococcus aureus strains, J. Theor. Biol. 205 (2000) 231–240.

DOI: 10.1006/jtbi.2000.2062

Google Scholar

[5] K. Lee, H. M. Sun, K. T. Kim, A. F. Mendonca, H. D. Park, Antimicrobial Effects of Various Flavonoids on O157: H7 Cell Growth and Lipopolysaccharide Production, Food Sci. Biotechnol. 19 (2010) 257–258.

DOI: 10.1007/s10068-010-0037-7

Google Scholar

[6] L. Padilla-Campos, R. A. Zarate, Electronic and structural properties of 5-hydroxy-7-metoxyflavanon: A theoretical approach, J. Chil. Chem. Soc. 61 (2016) 3267–3272.

DOI: 10.4067/s0717-97072016000400023

Google Scholar

[7] G. K. Mukusheva, A. Lipeeva, P. Zhanymkhanova, E. Shults, Y. Gatilov, M. Shakirov, S. Adekenov, The flavanon pinostrobin in the synthesis of coumarin-chalcone hybrids with a triazole linker. Chem. Heterocycl. Compd. 51 (2015) 146–152.

DOI: 10.1007/s10593-015-1672-y

Google Scholar

[8] S. D. Marliyana, D. Mujahidin, Y. M. Syah, Pinostrobin Derivatives from Prenylation Reaction and their Antibacterial Activity against Clinical Bacteria, IOP Conference Series: Mater. Sci. Eng. 349 (2018) 1-6.

DOI: 10.1088/1757-899x/349/1/012057

Google Scholar

[9] L.G. Sarbu, L.G. Bahrin, C. Babii, M. Stefan and M.L. Birsa, Synthetic flavonoids with antimicrobial activity: a review. J. Appl. Microbiol. 127 (2019) 1282-1290.

DOI: 10.1111/jam.14271

Google Scholar

[10] Y. Xie, W. Yang, F. Tang, X. Chen, L.Ren, Antibacterial Activities of Flavonoids: Structure- Activity Relationship and Mechanism, Curr. Med. Chem. 22 (2014) 132–149.

DOI: 10.2174/0929867321666140916113443

Google Scholar

[11] A. Foroumadi, N. Mohammadhosseini, S. Emami, B. Letafat, Full Paper Synthesis and Antibacterial Activity of New 7-Piperazinyl- quinolones Containing a Functionalized 2- (Furan-3-yl) ethyl Moiety, Archiv der Pharmazie. 340 (2007) 47–52.

DOI: 10.1002/ardp.200600169

Google Scholar

[12] Y. N. Mabkhot, F. Alatibi, N. N. E. El-Sayed, S. Al-Showiman , N. A. Kheder, A. Wadood , A. Rauf, , S. Bawazeer, T. B. Hadda , Antimicrobial Activity of Some Novel Armed Thiophene Derivatives and Petra/Osiris/Molinspiration (POM) Analyses, Molecules. 21 (2016) 222-238.

DOI: 10.3390/molecules21020222

Google Scholar

[13] World Health Organization. Antibiotic Resistance. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 6 Mei 2024).

Google Scholar

[14] S.D. Marliyana, M. Firdaus, M. W. Wartono, U. W. Apriani, D. I. Utami, Chemical Modification of Pinostrobin from The Rhizome of Kaempferia Pandurata Roxb. Through Ethylation and Allylation Reactions, Chem. Nat. Comp. 60 (2023) 1026-1033.

DOI: 10.1007/s10600-023-04197-z

Google Scholar

[15] C. Babii, G. Mihalache, L.G. Bahrin, A.N. Neagu, I. Gostin, C.T. Mihai, L.G. Sarbu, L.M. Birsa, M. Stefan, A novel synthetic flavonoid with potent antibacterial properties: in vitro activity and proposed mode of action. PLoS ONE 13 (2018) 1-15.

DOI: 10.1371/journal.pone.0194898

Google Scholar

[16] O. O. Olajuyigbe, A. J. Afolayan, In Vitro Antibacterial and Time-Kill Assessment of Crude Methanolic Stem Bark Extract of Acacia mearnsii De Wild against Bacteria in Shigellosis, Molecules. 17 (2012) 2103-2118.

DOI: 10.3390/molecules17022103

Google Scholar

[17] N. F. Shamsudin, Q. U. Ahmed, S. Mahmood, S. A. A.Shah , A.Khatib, S. Mukhtar, M.A. Alsharif, H. Parveen and Z. A. Zakaria, Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 27 (2022) 1149-1191.

DOI: 10.3390/molecules27041149

Google Scholar

[18] N. S. H. N. Moorthy, R. J. Singh, H. P. Singh, S. D. Gupta, Synthesis, Biological Evaluation and In Silico Metabolic and Toxicity Prediction of Some Flavanone Derivatives, Chem. Pharm. Bull. 54 (2006)1384–1390.

DOI: 10.1248/cpb.54.1384

Google Scholar

[19] T. Y., Li, Q. Wang, K. S. Bi, Bioactive flavonoids in medicinal plants: Structure, activity and biological fate, Asian J. Pharm. Sci. 13 (2018)12-23.

DOI: 10.1016/j.ajps.2017.08.004

Google Scholar

[20] M.S. Olivella, V.E.P. Zarelli, N.B. Pappano, N.B. Debattista, A comparative study of bacteriostatic activity of synthetic hydroxylated flavonoids. Braz J Microbiol 32 (2001) 229–232.

DOI: 10.1590/s1517-83822001000300013

Google Scholar

[21] H.P. Ávila, E.D.F.A. Smânia, F.D. Monache, A. Smânia, Structure–activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 16 (2008) 9790–9794.

DOI: 10.1016/j.bmc.2008.09.064

Google Scholar

[22] S. Manner, M. Skogman, D. Goeres, P. Vuorela, A. Fallarero, Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int J Mol Sci. 14 (2013) 19434–19451.

DOI: 10.3390/ijms141019434

Google Scholar

[23] J. Kozlowska, E. Grela, D. Baczynska, A. Grabowiecka, M. Aniol, Novel O -alkyl Derivatives of Naringenin and Their. Molecules. 24 (2019) 1–15.

Google Scholar