[1]
N. L. Najwa Thajudin, M. H. Zainol, and R. K. Shuib, "Intrinsic room temperature self-healing natural rubber based on metal thiolate ionic network," Polym. Test., vol. 93, p.106975, 2021.
DOI: 10.1016/j.polymertesting.2020.106975
Google Scholar
[2]
S. Islam and G. Bhat, "Progress and challenges in self-healing composite materials," Mater. Adv., vol. 2, no. 6, p.1896–1926, 2021.
DOI: 10.1039/d0ma00873g
Google Scholar
[3]
X. Wang, D. Liang, and B. Cheng, "Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond," Compos. Sci. Technol., vol. 193, no. October 2019, 2020.
DOI: 10.1016/j.compscitech.2020.108127
Google Scholar
[4]
Y. Li, Y. Jin, W. Fan, and R. Zhou, "A review on room-temperature self-healing polyurethane: synthesis, self-healing mechanism and application," J. Leather Sci. Eng., vol. 4, no. 1, 2022.
DOI: 10.1186/s42825-022-00097-0
Google Scholar
[5]
Y. Yao, Z. Xu, B. Liu, M. Xiao, J. Yang, and W. Liu, "Multiple H-Bonding Chain Extender-Based Ultrastiff Thermoplastic Polyurethanes with Autonomous Self-Healability, Solvent-Free Adhesiveness, and AIE Fluorescence," Adv. Funct. Mater., vol. 31, no. 4, p.1–11, 2021.
DOI: 10.1002/adfm.202006944
Google Scholar
[6]
B. Algaily, W. Kaewsakul, S. S. Sarkawi, and E. Kalkornsurapranee, "Alleviating molecular-scale damages in silica-reinforced natural rubber compounds by a self-healing modifier," Polymers (Basel)., vol. 13, no. 1, p.1–22, 2021.
DOI: 10.3390/polym13010039
Google Scholar
[7]
N. F. Mohd Sani, H. J. Yee, N. Othman, A. A. Talib, and R. K. Shuib, "Intrinsic self-healing rubber: A review and perspective of material and reinforcement," Polym. Test., vol. 111, no. April, p.107598, 2022.
DOI: 10.1016/j.polymertesting.2022.107598
Google Scholar
[8]
C. Xu, L. Cao, X. Huang, Y. Chen, B. Lin, and L. Fu, "Self-Healing Natural Rubber with Tailorable Mechanical Properties Based on Ionic Supramolecular Hybrid Network," ACS Appl. Mater. Interfaces, vol. 9, no. 34, p.29363–29373, 2017.
DOI: 10.1021/acsami.7b09997
Google Scholar
[9]
M. Hernández Santana, M. den Brabander, S. García, and S. van der Zwaag, "Routes to Make Natural Rubber Heal: A Review," Polym. Rev., vol. 58, no. 4, p.585–609, 2018.
DOI: 10.1080/15583724.2018.1454947
Google Scholar
[10]
L. Strohmeier, B. Schrittesser, and S. Schlögl, "Approaches Toward In Situ Reinforcement of Organic Rubbers: Strategy and Recent Progress," Polym. Rev., vol. 62, no. 1, p.142–174, 2022.
DOI: 10.1080/15583724.2021.1897998
Google Scholar
[11]
X. Zhang, T. Lin, Z. Tang, and B. Guo, "Elastomeric composites based on zinc diacrylate-cured epoxidized natural rubber: Mechanical properties and ageing-resistance," KGK Kautschuk Gummi Kunststoffe, vol. 68, no. 7–8, p.39–45, 2015.
Google Scholar
[12]
M. Wu, T. Luo, J. Lu, Y. Wang, B. Lin, and C. Xu, "Fabricating robust natural rubber composites with photothermal conversion and near-infrared light-actuated remote-controlled accurate self-healing," Compos. Sci. Technol., vol. 235, no. February, p.109966, 2023.
DOI: 10.1016/j.compscitech.2023.109966
Google Scholar
[13]
I. A. M. Jawad, A. A. Al-Hamdani, and R. M. A. Hasan, "Fourier Transform Infrared (FT-IR) Spectroscopy of Modified Heat Cured Acrylic Resin Denture Base Material," Int. J. Enhanc. Res. Sci., vol. 5, no. February 2021, p.2319–7463, 2016.
Google Scholar