Research Progress on Welding Method of Corrugated Core and I-Core Sandwich Plate

Article Preview

Abstract:

The use of sandwich plates has gained significant popularity in the construction and machinery industries due to their exceptional stiffness-to-mass and strength-to-mass ratios. Among various structural types, I-core sandwich plates (T-joints) and corrugated-core sandwich plates (K-joints) are widely utilized. The welding method employed significantly impacts joint performance and overall structural characteristics. This review paper examines recent research on these commonly used sandwich plates and their joint performance, encompassing preparation methods, performance evaluation, structure optimization, and overall research progress. Furthermore, the influence of different preparation methods on the overall performance of sandwich plates is also addressed.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 15)

Pages:

63-70

Citation:

Online since:

January 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mouritz, A. P., Gellert, E., Burchill, P., & Challis, K. Review of advanced composite structures for naval ships and submarines. Composite structures, 53(1) (2001) 21-42.

DOI: 10.1016/s0263-8223(00)00175-6

Google Scholar

[2] Xu N. Analysis of green manufacturing technology in Marine manufacturing. Pearl River Transport, (1) (2017) 88-89.

Google Scholar

[3] Poirier, J. D., Vel, S. S., & Caccese, V. Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm. Engineering Structures, 49 (2013) 508-524.

DOI: 10.1016/j.engstruct.2012.10.033

Google Scholar

[4] Jelovica, J., Romanoff, J., & Klein, R. Eigenfrequency analyses of laser-welded web–core sandwich panels. Thin-Walled Structures, 101(2016)120-128.

DOI: 10.1016/j.tws.2016.01.002

Google Scholar

[5] Crupi, V., Epasto, G., & Guglielmino, E. Low-velocity impact strength of sandwich materials. Journal of Sandwich Structures & Materials, 13(4) (2013) 409-426.

DOI: 10.1177/1099636210385285

Google Scholar

[6] Kolsters, H., & Zenkert, D. Buckling of laser-welded sandwich panels. Part 1: Elastic buckling parallel to the webs. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 220(2) (2006) 67-79.

DOI: 10.1243/14750902jeme33

Google Scholar

[7] Nilsson, P., Atashipour, S. R., & Al-Emrani, M. Laser-Welded Corrugated-Core Sandwich Composition—Numerical Modelling Strategy for Structural Analysis. Journal of Composites Science, 7(9), (2023). 349.

DOI: 10.3390/jcs7090349

Google Scholar

[8] Jiang, X. X., Li, J. M., Cao, R., Zhu, L., Chen, J. H., Wu, Y. X., & Li, Z. G. Microstructures and properties of sandwich plane laser-welded joint of hull steel. Materials Science and Engineering: A, 595(2014) 43-53.

DOI: 10.1016/j.msea.2013.11.057

Google Scholar

[9] Jiang, X. X., Fei, S. C., Zhang, S., Ji, H., & Zhu, L. Failure Analysis of the Laser-Welded Web-Core Steel Sandwich Panel with Narrow Weld Width T-Joints. In Applied Mechanics and Materials (Vol. 863, (2017) pp.311-316). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/amm.863.311

Google Scholar

[10] Wang, L., Qiao, J., Chen, Z., Zhu, L., & Chen, J. Method exploration of flux bands constricting arc welding for high-strength steel T-joints. The International Journal of Advanced Manufacturing Technology, 105(5) (2019) 2447-2460.

DOI: 10.1007/s00170-019-04471-x

Google Scholar

[11] Rozant, O., Bourban, P. E., & Månson, J. A. Manufacturing of three-dimensional sandwich parts by direct thermoforming. Composites Part A: Applied Science and Manufacturing, 32(11) (2001)1593-1601.

DOI: 10.1016/s1359-835x(00)00184-6

Google Scholar

[12] Banhart, J., & Seeliger, H. W. Aluminium foam sandwich panels: manufacture, metallurgy and applications. Advanced Engineering Materials, 10(9) (2008)793-802.

DOI: 10.1002/adem.200800091

Google Scholar

[13] Crump, D. A., Dulieu-Barton, J. M., & Savage, J. The manufacturing procedure for aerospace secondary sandwich structure panels. Journal of Sandwich Structures & Materials, 12(4) (2010) 421-447.

DOI: 10.1177/1099636209104531

Google Scholar

[14] Ren F J. Laser welding technology and research progress. Modern welding, 11(2010) 1-4.

Google Scholar

[15] Ji yipeng, Chen jiqing, jiao east, and wang li. Welding technology for laser - arc composite heat source. Welding technology, 38(12) (2009) 1-7.

Google Scholar

[16] Liu J C, & Li L J. Discussion on laser composite welding. Welding Technology, 31(4) (2002) 6-8.

Google Scholar

[17] Li, C., & Liu, L. Investigation on weldability of magnesium alloy thin sheet T-joints: arc welding, laser welding, and laser-arc hybrid welding. The International Journal of Advanced Manufacturing Technology, 65(1) (2013) 27-34.

DOI: 10.1007/s00170-012-4145-9

Google Scholar

[18] Sarma, D. K. Hybrid Laser Welding: Process Advantages and Application for Shipbuilding. Essex, England, ESAB Global Publications. 2012.

Google Scholar

[19] Skawinski, O., Binetruy, C., Krawczak, P., Grando, J., & Bonneau, E. All-thermoplastic composite sandwich panels–Part I: Manufacturing and improvement of surface quality. Journal of Sandwich Structures & Materials, 6(5) (2004) 399-421.

DOI: 10.1177/1099636204040094

Google Scholar

[20] Vitale, J. P., Francucci, G., Xiong, J., & Stocchi, A. Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels. Composites Part A: Applied Science and Manufacturing, 94, (2017) 217-225.

DOI: 10.1016/j.compositesa.2016.12.021

Google Scholar

[21] Lin, H., Luo, H., Huang, W., Zhang, X., & Yao, G. Diffusion bonding in fabrication of aluminum foam sandwich panels. Journal of Materials Processing Technology, 230 (2016) 35-41.

DOI: 10.1016/j.jmatprotec.2015.10.034

Google Scholar

[22] Mei, J., Liu, J., & Liu, J. A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel. Composites Part A: Applied Science and Manufacturing, 102 (2017) 28-39.

DOI: 10.1016/j.compositesa.2017.07.020

Google Scholar

[23] Romanoff J, Varsta P, Remes H. Laser-welded web-core sandwich plates under patch loading, Marine Structures, 20(1-2) (2007) 25-48.

DOI: 10.1016/j.marstruc.2007.04.001

Google Scholar

[24] Volpp J. Investigation on the Influence of Different Laser Beam Intensity Distributions on Keyhole Geometry During Laser Welding. Physics Procedia, 39(9) (2012)17-26.

DOI: 10.1016/j.phpro.2012.10.009

Google Scholar

[25] Florea R S, Bammann D J, Yeldell A, et al. Welding parameters influence on fatigue life and microstructure in resistance s pot welding of 6061-T6 aluminum alloy, Materials & Design, 45 (2013) 456-465.

DOI: 10.1016/j.matdes.2012.08.053

Google Scholar

[26] C. Berggreen. Non-uniform Compressive Strength of Deboned Sandwich Panels, Structures and Materials, 7(6) (2005) 483-517.

DOI: 10.1177/1099636205054790

Google Scholar

[27] Meng W. Research on Dynamic Process and Forming Characteristics of Laser Welding of T-lap Joint of High Strength Steel (Doctoral dissertation, Shanghai Jiao Tong University). 2014.

Google Scholar

[28] Romanoff, J. Periodic and homogenized bending response of faceplates of filled web-core sandwich beams. Composite Structures, 113 (2014) 83-88.

DOI: 10.1016/j.compstruct.2014.03.001

Google Scholar

[29] Jelovica, J., & Romanoff, J. Load-carrying behaviour of web-core sandwich plates in compression. Thin-walled structures, 73 (2013) 264-272.

DOI: 10.1016/j.tws.2013.08.012

Google Scholar

[30] Boroński, D., & Szala, J. Tests of local strains in steel laser-welded sandwich structure. Polish Maritime Research, 13(S1) (2006) 31-36.

Google Scholar

[31] Jiang, X. X., Saffirna, M. S., Rejab, M. R. M., Romli, N. K., & Ma, Q. Experiment on different T-joint characteristic for laser-welded I-core galvanize steel sandwich plate. Materials Today: Proceedings, 60 (2022)1179-1185.

DOI: 10.1016/j.matpr.2022.05.036

Google Scholar

[32] Karttunen, A. T., Kanerva, M., Frank, D., Romanoff, J., Remes, H., Jelovica, J., ... & Sarlin, E. Fatigue strength of laser-welded foam-filled steel sandwich beams. Materials & Design, 115 (2017) 64-72.

DOI: 10.1016/j.matdes.2016.11.039

Google Scholar

[33] Romli, N. K., Rejab, M. R. M., Xiaoxia, J., & Merzuki, N. M. N. Numerical modelling response of laser welded sandwich panel under three-point bending test. In IOP Conference Series: Materials Science and Engineering (Vol. 469, No. 1, (2019) p.012060). IOP Publishing.

DOI: 10.1088/1757-899x/469/1/012060

Google Scholar

[34] Jiang, X. X., Ji, H., Rejab, M. R. M., Zhang, S., Ishak, M., & Zhu, L. Geometrical parameters influence on the stiffness of steel sandwich plates with web-core. In IOP Conference Series: Materials Science and Engineering (Vol. 257, No. 1 (2017) p.012081). IOP Publishing.

DOI: 10.1088/1757-899x/257/1/012081

Google Scholar

[35] Bernatskyi, A. V., Berdnikova, O. M., Klochkov, I. M., Sydorets, V. M., & Chinakhov, D. A. E. Laser welding in different spatial positions of T-joints of austenitic steel. In IOP Conference Series: Materials Science and Engineering (Vol. 582, No. 1, (2019) p.012048). IOP Publishing

DOI: 10.1088/1757-899x/582/1/012048

Google Scholar

[36] Zhang, X., Li, L., Chen, Y., Yang, Z., & Zhu, X. Experimental investigation on electric current-aided laser stake welding of aluminum alloy T-joints. Metals, 7(11) (2017) 467.

DOI: 10.3390/met7110467

Google Scholar

[37] Saternus, Z., Piekarska, W., Kubiak, M., & Domański, T. The Influence of Welding Heat Source Inclination on the Melted Zone Shape, Deformations and Stress State of Laser Welded T-Joints. Materials, 14(18) (2021) 5303.

DOI: 10.3390/ma14185303

Google Scholar

[38] Wang, L., Qiao, J., & Chen, J. The mechanism of effect of flux bands on the arc behavior in flux bands constricting arc welding process. Materials, 13(7) (2021)1652.

DOI: 10.3390/ma13071652

Google Scholar

[39] Wang, L., Qiao, J., Chen, Z., Zhu, L., & Chen, J. Method exploration of flux bands constricting arc welding for high-strength steel T-joints. The International Journal of Advanced Manufacturing Technology, 105 (2019)2447-2460.

DOI: 10.1007/s00170-019-04471-x

Google Scholar

[40] Wang, L., Qiao, J., Zhu, L., & Chen, J. Effects of flux bands on arc stability in flux bands constricting arc welding. Journal of Manufacturing Processes, 54 (2020) 190-200.

DOI: 10.1016/j.jmapro.2020.03.012

Google Scholar

[41] Ammash, H. K., & Al-Bader, M. A. Shear Behaviour of Steel Girder with Web-Corrugated Core Sandwich Panels. In IOP Conference Series: Materials Science and Engineering (Vol. 1090, No. 1(2021) p.012017). IOP Publishing.

DOI: 10.1088/1757-899x/1090/1/012017

Google Scholar

[42] Liu, K., Ke, L., Sha, Y., Wu, G., Wang, P., & Wang, Z. Dynamic response of laser-welded corrugated sandwich panels subjected to plane blast wave. International Journal of Impact Engineering, 164 (2022) 104203.

DOI: 10.1016/j.ijimpeng.2022.104203

Google Scholar

[43] Wang, H., Cheng, Y., Liu, J., & Zhang, P. Hydroelastic behaviours of laser-welded lightweight corrugated sandwich panels subjected to water impact: Experiments and simulations. Thin-Walled Structures, 146 (2020) 106452.

DOI: 10.1016/j.tws.2019.106452

Google Scholar

[44] Nilsson, P., Al-Emrani, M., & Atashipour, S. R. Fatigue-strength assessment of laser welds in corrugated core steel sandwich panels. Journal of Constructional Steel Research, 164 (2020) 105797.

DOI: 10.1016/j.jcsr.2019.105797

Google Scholar