[1]
Mouritz, A. P., Gellert, E., Burchill, P., & Challis, K. Review of advanced composite structures for naval ships and submarines. Composite structures, 53(1) (2001) 21-42.
DOI: 10.1016/s0263-8223(00)00175-6
Google Scholar
[2]
Xu N. Analysis of green manufacturing technology in Marine manufacturing. Pearl River Transport, (1) (2017) 88-89.
Google Scholar
[3]
Poirier, J. D., Vel, S. S., & Caccese, V. Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm. Engineering Structures, 49 (2013) 508-524.
DOI: 10.1016/j.engstruct.2012.10.033
Google Scholar
[4]
Jelovica, J., Romanoff, J., & Klein, R. Eigenfrequency analyses of laser-welded web–core sandwich panels. Thin-Walled Structures, 101(2016)120-128.
DOI: 10.1016/j.tws.2016.01.002
Google Scholar
[5]
Crupi, V., Epasto, G., & Guglielmino, E. Low-velocity impact strength of sandwich materials. Journal of Sandwich Structures & Materials, 13(4) (2013) 409-426.
DOI: 10.1177/1099636210385285
Google Scholar
[6]
Kolsters, H., & Zenkert, D. Buckling of laser-welded sandwich panels. Part 1: Elastic buckling parallel to the webs. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 220(2) (2006) 67-79.
DOI: 10.1243/14750902jeme33
Google Scholar
[7]
Nilsson, P., Atashipour, S. R., & Al-Emrani, M. Laser-Welded Corrugated-Core Sandwich Composition—Numerical Modelling Strategy for Structural Analysis. Journal of Composites Science, 7(9), (2023). 349.
DOI: 10.3390/jcs7090349
Google Scholar
[8]
Jiang, X. X., Li, J. M., Cao, R., Zhu, L., Chen, J. H., Wu, Y. X., & Li, Z. G. Microstructures and properties of sandwich plane laser-welded joint of hull steel. Materials Science and Engineering: A, 595(2014) 43-53.
DOI: 10.1016/j.msea.2013.11.057
Google Scholar
[9]
Jiang, X. X., Fei, S. C., Zhang, S., Ji, H., & Zhu, L. Failure Analysis of the Laser-Welded Web-Core Steel Sandwich Panel with Narrow Weld Width T-Joints. In Applied Mechanics and Materials (Vol. 863, (2017) pp.311-316). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/amm.863.311
Google Scholar
[10]
Wang, L., Qiao, J., Chen, Z., Zhu, L., & Chen, J. Method exploration of flux bands constricting arc welding for high-strength steel T-joints. The International Journal of Advanced Manufacturing Technology, 105(5) (2019) 2447-2460.
DOI: 10.1007/s00170-019-04471-x
Google Scholar
[11]
Rozant, O., Bourban, P. E., & Månson, J. A. Manufacturing of three-dimensional sandwich parts by direct thermoforming. Composites Part A: Applied Science and Manufacturing, 32(11) (2001)1593-1601.
DOI: 10.1016/s1359-835x(00)00184-6
Google Scholar
[12]
Banhart, J., & Seeliger, H. W. Aluminium foam sandwich panels: manufacture, metallurgy and applications. Advanced Engineering Materials, 10(9) (2008)793-802.
DOI: 10.1002/adem.200800091
Google Scholar
[13]
Crump, D. A., Dulieu-Barton, J. M., & Savage, J. The manufacturing procedure for aerospace secondary sandwich structure panels. Journal of Sandwich Structures & Materials, 12(4) (2010) 421-447.
DOI: 10.1177/1099636209104531
Google Scholar
[14]
Ren F J. Laser welding technology and research progress. Modern welding, 11(2010) 1-4.
Google Scholar
[15]
Ji yipeng, Chen jiqing, jiao east, and wang li. Welding technology for laser - arc composite heat source. Welding technology, 38(12) (2009) 1-7.
Google Scholar
[16]
Liu J C, & Li L J. Discussion on laser composite welding. Welding Technology, 31(4) (2002) 6-8.
Google Scholar
[17]
Li, C., & Liu, L. Investigation on weldability of magnesium alloy thin sheet T-joints: arc welding, laser welding, and laser-arc hybrid welding. The International Journal of Advanced Manufacturing Technology, 65(1) (2013) 27-34.
DOI: 10.1007/s00170-012-4145-9
Google Scholar
[18]
Sarma, D. K. Hybrid Laser Welding: Process Advantages and Application for Shipbuilding. Essex, England, ESAB Global Publications. 2012.
Google Scholar
[19]
Skawinski, O., Binetruy, C., Krawczak, P., Grando, J., & Bonneau, E. All-thermoplastic composite sandwich panels–Part I: Manufacturing and improvement of surface quality. Journal of Sandwich Structures & Materials, 6(5) (2004) 399-421.
DOI: 10.1177/1099636204040094
Google Scholar
[20]
Vitale, J. P., Francucci, G., Xiong, J., & Stocchi, A. Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels. Composites Part A: Applied Science and Manufacturing, 94, (2017) 217-225.
DOI: 10.1016/j.compositesa.2016.12.021
Google Scholar
[21]
Lin, H., Luo, H., Huang, W., Zhang, X., & Yao, G. Diffusion bonding in fabrication of aluminum foam sandwich panels. Journal of Materials Processing Technology, 230 (2016) 35-41.
DOI: 10.1016/j.jmatprotec.2015.10.034
Google Scholar
[22]
Mei, J., Liu, J., & Liu, J. A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel. Composites Part A: Applied Science and Manufacturing, 102 (2017) 28-39.
DOI: 10.1016/j.compositesa.2017.07.020
Google Scholar
[23]
Romanoff J, Varsta P, Remes H. Laser-welded web-core sandwich plates under patch loading, Marine Structures, 20(1-2) (2007) 25-48.
DOI: 10.1016/j.marstruc.2007.04.001
Google Scholar
[24]
Volpp J. Investigation on the Influence of Different Laser Beam Intensity Distributions on Keyhole Geometry During Laser Welding. Physics Procedia, 39(9) (2012)17-26.
DOI: 10.1016/j.phpro.2012.10.009
Google Scholar
[25]
Florea R S, Bammann D J, Yeldell A, et al. Welding parameters influence on fatigue life and microstructure in resistance s pot welding of 6061-T6 aluminum alloy, Materials & Design, 45 (2013) 456-465.
DOI: 10.1016/j.matdes.2012.08.053
Google Scholar
[26]
C. Berggreen. Non-uniform Compressive Strength of Deboned Sandwich Panels, Structures and Materials, 7(6) (2005) 483-517.
DOI: 10.1177/1099636205054790
Google Scholar
[27]
Meng W. Research on Dynamic Process and Forming Characteristics of Laser Welding of T-lap Joint of High Strength Steel (Doctoral dissertation, Shanghai Jiao Tong University). 2014.
Google Scholar
[28]
Romanoff, J. Periodic and homogenized bending response of faceplates of filled web-core sandwich beams. Composite Structures, 113 (2014) 83-88.
DOI: 10.1016/j.compstruct.2014.03.001
Google Scholar
[29]
Jelovica, J., & Romanoff, J. Load-carrying behaviour of web-core sandwich plates in compression. Thin-walled structures, 73 (2013) 264-272.
DOI: 10.1016/j.tws.2013.08.012
Google Scholar
[30]
Boroński, D., & Szala, J. Tests of local strains in steel laser-welded sandwich structure. Polish Maritime Research, 13(S1) (2006) 31-36.
Google Scholar
[31]
Jiang, X. X., Saffirna, M. S., Rejab, M. R. M., Romli, N. K., & Ma, Q. Experiment on different T-joint characteristic for laser-welded I-core galvanize steel sandwich plate. Materials Today: Proceedings, 60 (2022)1179-1185.
DOI: 10.1016/j.matpr.2022.05.036
Google Scholar
[32]
Karttunen, A. T., Kanerva, M., Frank, D., Romanoff, J., Remes, H., Jelovica, J., ... & Sarlin, E. Fatigue strength of laser-welded foam-filled steel sandwich beams. Materials & Design, 115 (2017) 64-72.
DOI: 10.1016/j.matdes.2016.11.039
Google Scholar
[33]
Romli, N. K., Rejab, M. R. M., Xiaoxia, J., & Merzuki, N. M. N. Numerical modelling response of laser welded sandwich panel under three-point bending test. In IOP Conference Series: Materials Science and Engineering (Vol. 469, No. 1, (2019) p.012060). IOP Publishing.
DOI: 10.1088/1757-899x/469/1/012060
Google Scholar
[34]
Jiang, X. X., Ji, H., Rejab, M. R. M., Zhang, S., Ishak, M., & Zhu, L. Geometrical parameters influence on the stiffness of steel sandwich plates with web-core. In IOP Conference Series: Materials Science and Engineering (Vol. 257, No. 1 (2017) p.012081). IOP Publishing.
DOI: 10.1088/1757-899x/257/1/012081
Google Scholar
[35]
Bernatskyi, A. V., Berdnikova, O. M., Klochkov, I. M., Sydorets, V. M., & Chinakhov, D. A. E. Laser welding in different spatial positions of T-joints of austenitic steel. In IOP Conference Series: Materials Science and Engineering (Vol. 582, No. 1, (2019) p.012048). IOP Publishing
DOI: 10.1088/1757-899x/582/1/012048
Google Scholar
[36]
Zhang, X., Li, L., Chen, Y., Yang, Z., & Zhu, X. Experimental investigation on electric current-aided laser stake welding of aluminum alloy T-joints. Metals, 7(11) (2017) 467.
DOI: 10.3390/met7110467
Google Scholar
[37]
Saternus, Z., Piekarska, W., Kubiak, M., & Domański, T. The Influence of Welding Heat Source Inclination on the Melted Zone Shape, Deformations and Stress State of Laser Welded T-Joints. Materials, 14(18) (2021) 5303.
DOI: 10.3390/ma14185303
Google Scholar
[38]
Wang, L., Qiao, J., & Chen, J. The mechanism of effect of flux bands on the arc behavior in flux bands constricting arc welding process. Materials, 13(7) (2021)1652.
DOI: 10.3390/ma13071652
Google Scholar
[39]
Wang, L., Qiao, J., Chen, Z., Zhu, L., & Chen, J. Method exploration of flux bands constricting arc welding for high-strength steel T-joints. The International Journal of Advanced Manufacturing Technology, 105 (2019)2447-2460.
DOI: 10.1007/s00170-019-04471-x
Google Scholar
[40]
Wang, L., Qiao, J., Zhu, L., & Chen, J. Effects of flux bands on arc stability in flux bands constricting arc welding. Journal of Manufacturing Processes, 54 (2020) 190-200.
DOI: 10.1016/j.jmapro.2020.03.012
Google Scholar
[41]
Ammash, H. K., & Al-Bader, M. A. Shear Behaviour of Steel Girder with Web-Corrugated Core Sandwich Panels. In IOP Conference Series: Materials Science and Engineering (Vol. 1090, No. 1(2021) p.012017). IOP Publishing.
DOI: 10.1088/1757-899x/1090/1/012017
Google Scholar
[42]
Liu, K., Ke, L., Sha, Y., Wu, G., Wang, P., & Wang, Z. Dynamic response of laser-welded corrugated sandwich panels subjected to plane blast wave. International Journal of Impact Engineering, 164 (2022) 104203.
DOI: 10.1016/j.ijimpeng.2022.104203
Google Scholar
[43]
Wang, H., Cheng, Y., Liu, J., & Zhang, P. Hydroelastic behaviours of laser-welded lightweight corrugated sandwich panels subjected to water impact: Experiments and simulations. Thin-Walled Structures, 146 (2020) 106452.
DOI: 10.1016/j.tws.2019.106452
Google Scholar
[44]
Nilsson, P., Al-Emrani, M., & Atashipour, S. R. Fatigue-strength assessment of laser welds in corrugated core steel sandwich panels. Journal of Constructional Steel Research, 164 (2020) 105797.
DOI: 10.1016/j.jcsr.2019.105797
Google Scholar