[1]
D. Maradin, Advantages and disadvantages of renewable energy sources utilization, International, Journal of Energy Economics and Policy, 11, (2021).
DOI: 10.32479/ijeep.11027
Google Scholar
[2]
Mughal, Shafqat, Yog Raj Sood, and R. K. Jarial, A review on solar photovoltaic technology and future trends, International Journal of Scientific Research in Computer Science, Engineering and Information Technology 4.1, (2018) 227-235.
Google Scholar
[3]
M. Yahya, A. Bouziani, C. Ocak, Z. Seferoğlu, and M. Sillanpää, Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions," Dyes and Pigments, 192. (2021). 2–7
DOI: 10.1016/j.dyepig.2021.109227
Google Scholar
[4]
F. Z. Kessaissia, A. Zegaoui, M. Aillerie, M. Arab, M. Boutoubat, and C. Fares, Factorial design and response surface optimization for modeling photovoltaic module parameters, Energy Reports, 6 (2020) 299–309.
DOI: 10.1016/j.egyr.2019.11.016
Google Scholar
[5]
N. M. Nursam, J. Hidayat, Shobih, E. S. Rosa, and L. M. Pranoto, A comparative study between titania and zirconia as material for scattering layer in dye sensitized solar cells, Journal of Physics: Conference Series, Institute of Physics Publishing, 1 (2018) 1742-6596.
DOI: 10.1088/1742-6596/1011/1/012003
Google Scholar
[6]
U. A. Kamarulzaman, M. Y. A. Rahman, M. S. Su'ait, and A. A. Umar, Effect of annealing treatment on multilayer TiO2 films on the performance of dye-sensitized solar cells, Optik (Stuttg), 218 (2020).
DOI: 10.1016/j.ijleo.2020.164976
Google Scholar
[7]
V. G. Maratin, A. M. Harun, and M. Y. A. Rahman, Dye-sensitized solar cell utilizing degussa p.25 and anatase TiO2 films: Comparative study of photovoltaic performance: Effect of N719 dye concentration, Int J Electrochem Sci, 15 (2020) 1643–1654.
DOI: 10.20964/2020.02.49
Google Scholar
[8]
M. N. Mustafa, S. Shafie, M. H. Wahid, and Y. Sulaiman, Optimization of power conversion efficiency of polyvinyl-alcohol/titanium dioxide as light scattering layer in DSSC using response surface methodology/central composite design, 15 (2023).
DOI: 10.1016/j.rinp.2019.102559
Google Scholar
[9]
N.Fadzilah M, Charge transport and electron recombination suppression in dye-sensitized solar cells using graphene quantum dots, Results in Physics 13 (2019) 102171-102177.
DOI: 10.1016/j.rinp.2019.102171
Google Scholar
[10]
W. H. Chen, A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM), Renewable and Sustainable Energy Reviews, 169 (2022).
DOI: 10.1016/j.rser.2022.112917
Google Scholar
[11]
M. S. Hossain, N. A. Rahim, M. M. Aman, and J. Selvaraj, Application of ANOVA method to study solar energy for hydrogen production, Int J Hydrogen Energy, 44 (2019) 14571–14579.
DOI: 10.1016/j.ijhydene.2019.04.028
Google Scholar
[12]
Saxena, V., Singh, A., Prakash, O., Mahajan, Improved performance of dye sensitized solar cell via fine tuning of ultra-thin compact TiO2 layer, Solar Energy Materials and Solar Cells, 170 (2017) 127-136.
DOI: 10.1016/j.solmat.2017.05.013
Google Scholar