[1]
A. Amini, P. Asadi, and P. Zolghadr, Friction stir welding applications in industry. Woodhead Publishing Limited, 2014.
DOI: 10.1533/9780857094551.671
Google Scholar
[2]
J. de Backer and B. Verheyden, "Robotic Friction Stir Welding for Automotive and Aviation Applications," Mechanical Engineering, no. May, p.57, 2009.
Google Scholar
[3]
M. Mahoney, S. Sanderson, P. Maak, R. Steel, J. Babb, and D. Fleck, "Friction Stir Welding of Carbon Steel for Application in Used Fuel Containers," Materials Science Forum, vol. 786, p.1753–1758, 2014.
DOI: 10.4028/www.scientific.net/MSF.783-786.1753
Google Scholar
[4]
W. M. Thomas et al., "Friction Welding," 1992.
DOI: 10.1007/978-3-642-54607-5
Google Scholar
[5]
J. Wang, J. Su, R. S. Mishra, R. Xu, and J. A. Baumann, "Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy," Wear, vol. 321, p.25–32, 2014.
DOI: 10.1016/j.wear.2014.09.010
Google Scholar
[6]
R. S. Mishra and Z. Y. Ma, "Friction stir welding and processing," Materials Science and Engineering R: Reports, vol. 50, no. 1–2, p.1–78, 2005.
DOI: 10.1016/j.mser.2005.07.001
Google Scholar
[7]
M. K. B. Givi; and P. Asadi;, Advances in Friction Stir Welding and Processing Related. Woodhead Publishing Limited, 2014.
Google Scholar
[8]
G. K. Padhy, C. S. Wu, and S. Gao, "Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review," J Mater Sci Technol, vol. 34, no. 1, p.1–38, 2018.
DOI: 10.1016/j.jmst.2017.11.029
Google Scholar
[9]
F. C. Liu, H. Liu, K. Nakata, N. Yamamoto, and J. Liao, "Investigation on friction stir welding parameter design for lap joining of pure titanium," in Proceedings of the 1st International Joint Symposium on Joining and Welding, Woodhead Publishing Limited, 2013, p.159–163.
DOI: 10.1533/978-1-78242-164-1.159
Google Scholar
[10]
S. Kalpakjian and Steven R. Schmid, Manufacturing Engineering And Technology, 4th Editio. Prentice-Hall, Inc., 2001.
Google Scholar
[11]
B. T. Gibson et al., "Friction stir welding: Process, automation, and control," J Manuf Process, vol. 16, no. 1, p.56–73, 2014.
DOI: 10.1016/j.jmapro.2013.04.002
Google Scholar
[12]
J. Ding, B. Carter, K. Lawless, A. Nunes, M. Suites, and J. Schneider, "A Decade of Friction Stir Welding R & D At NASA ' s Marshall Space Flight Center And a Glance into the Future," NASA Marshall Space Flight Center, 1994.
DOI: 10.1002/047147844x.pc2154
Google Scholar
[13]
A. A. Carvalho, J. M. A. Rebello, M. P. V. Souza, L. V. S. Sagrilo, and S. D. Soares, "Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry," International Journal of Pressure Vessels and Piping, vol. 85, no. 11, p.745–751, 2008.
DOI: 10.1016/j.ijpvp.2008.05.001
Google Scholar
[14]
W. Boyes, "Non-Destructive Testing," in Instrumentation Reference Book, 4th ed., Walt Boyes, Ed., Elsevier, 2010, p.567–592.
DOI: 10.1016/B978-0-7506-8308-1.00031-0
Google Scholar
[15]
P. Podrzaj, B. Jerman, and D. Klobcar, "Welding defects at friction stir welding," Metalurgija, vol. 54, no. 2, p.387–389, 2015.
Google Scholar
[16]
Y. Gao, Y. Morisada, H. Fujii, and J. Liao, "Microstructure and mechanical properties of friction lap-butt welded ultra-thin galvanized steel sheets," J Manuf Process, vol. 45, no. March, p.22–32, 2019.
DOI: 10.1016/j.jmapro.2019.06.028
Google Scholar
[17]
M. Panchal, D. Patel, H. Vyas, and K. Mehta, "Ultra-thin friction stir welding on aluminum alloy," Mater Today Proc, vol. 26, p.2888–2894, 2020.
DOI: 10.1016/j.matpr.2020.02.597
Google Scholar