[1]
Ruyters, S., Salaets, P., Oorts, K., & Smolders, E. (2013). Copper toxicity in soils under established vineyards in Europe: a survey. Science of the Total Environment, 443, 470-477.
DOI: 10.1016/j.scitotenv.2012.11.001
Google Scholar
[2]
Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., ... & Shaheen, Z. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. Journal of pharmaceutical sciences and research, 7(3), 89.
Google Scholar
[3]
Millan J, Mateo R, Taggart MA, López-Bao JV, Viota M, Monsalve L et al (2008) Levels of heavy metals and metalloids in critically endangered Iberian lynx and other wild carnivores from southern Spain. Sci Total Environ 399:193–201
DOI: 10.1016/j.scitotenv.2008.03.038
Google Scholar
[4]
Hernandez LM, Gomara B, Fernandez M, Jimenez B, Gonzalez MJ, Baos R et al (1999) Accumulation of heavy metals and as in wetland birds in the area around Donana National Park affected by the Aznalcollar toxic spill. Sci Total Environ 242:293–308
DOI: 10.1016/s0048-9697(99)00397-6
Google Scholar
[5]
Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. CRC Press, Boca Raton, FL, 468 pp
DOI: 10.1201/b18198-57
Google Scholar
[6]
Szatnik-Kloc A (2014) Application of adsorption methods to determine the effect of pH and Cu-stress on the changes in the surface properties of the roots.IntAgrophys 28:511–520
DOI: 10.2478/intag-2014-0041
Google Scholar
[7]
Kovačič G, Lešnik RM, Vršič S (2013) An overview of the copper situation and usage in viticulture. Bulg J AgricSci 19:50–55
Google Scholar
[8]
Yruela, I. (2009). Copper in plants: acquisition, transport and interactions. Functional Plant Biology, 36(5), 409-430.
DOI: 10.1071/fp08288
Google Scholar
[9]
Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216
DOI: 10.1007/s10311-010-0297-8
Google Scholar
[10]
Xu, Y., Yu, W., Ma, Q., & Zhou, H. (2013). Accumulation of copper and zinc in soil and plant within ten-year application of different pig manure rates. Plant, soil and environment, 59(11), 492-499.
DOI: 10.17221/121/2013-pse
Google Scholar
[11]
Ashish B, Neeti K, Himanshu K. Copper toxicity: A comprehensive study. Res J Recent Sci. 2013;2277:2502
Google Scholar
[12]
Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., ... & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22, 8148-8162.
DOI: 10.1007/s11356-015-4496-5
Google Scholar
[13]
Kopittke, P. M., Menzies, N. W., de Jonge, M. D., McKenna, B. A., Donner, E., Webb, R. I., ... & Lombi, E. (2011). In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiology, 156(2), 663-673.
DOI: 10.1104/pp.111.173716
Google Scholar
[14]
Lequeux, H., Hermans, C., Lutts, S., & Verbruggen, N. (2010). Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48(8), 673-682
DOI: 10.1016/j.plaphy.2010.05.005
Google Scholar
[15]
Marastoni, L., Sandri, M., Pii, Y., Valentinuzzi, F., Brunetto, G., Cesco, S., & Mimmo, T. (2019). Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping. Chemosphere, 214, 563-578.
DOI: 10.1016/j.chemosphere.2018.09.127
Google Scholar
[16]
Brunetto, G., de Melo, G. W. B., Terzano, R., Del Buono, D., Astolfi, S., Tomasi, N., ... & Cesco, S. (2016). Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162, 293-307.
DOI: 10.1016/j.chemosphere.2016.07.104
Google Scholar
[17]
Jungwirth, C.R. B.K. Kowol, C.G. Keppler, W. Hartinger, P. Berger, P. Heffeter, Anticancer activity of metal complexes: involvement of redox processes, Antioxid. Redox Signal. 15 (2011) 1085–1127
DOI: 10.1089/ars.2010.3663
Google Scholar
[18]
Cendrowska-Pinkosz, M., Krauze, M., Juśkiewicz, J., Fotschki, B., & Ognik, K. (2023). The Influence of Copper Nanoparticles on Neurometabolism Marker Levels in the Brain and Intestine in a Rat Model. International Journal of Molecular Sciences, 24(14), 11321..
DOI: 10.3390/ijms241411321
Google Scholar
[19]
Cruch, P.J. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease, Int. J. Biochem. Cell Biol. 40 (2008) 181–198, https://doi.org/10.1016/j. biocel.2007.07.013
Google Scholar
[20]
Saman K, Abida F, Danish DD, MI MM, Akif Z. Biosorption of copper(II) from aqueous solution using citrus sinensis peel and wood sawdust: Utilization in the purification of drinking and wastewater. IJRRAS. 2013;16:297-306
Google Scholar
[21]
Ognik, K. E. Cholewinska, ´ J. Ju´skiewicz, Z. Zdunczyk, ´ K. Tutaj, R. Szlązak, (2019) The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model, J. Anim. Phys. Anim. Nutr. 103 675–686
DOI: 10.1111/jpn.13025
Google Scholar
[22]
Nasution, S. W., Yerizel, E., Chaidir, Z., &Zein, R. (2020). Protection Effects of Nothopanaxscutellarium on Hepatotoxicity of Copper (II) Induced to Experimental Rats. Open Access Macedonian Journal of Medical Sciences, 8(A), 283-286.
DOI: 10.3889/oamjms.2020.4238
Google Scholar
[23]
Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology, 28(1), 56-63.
DOI: 10.1093/ajcp/28.1.56
Google Scholar
[24]
Dumas BT, Watson WA, Biggs HG (1997) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 258:21–30
DOI: 10.1016/s0009-8981(96)06447-9
Google Scholar
[25]
Reinhold, J. (1953). Determination of serum total protein, albumin and globulin fractions by the biuret method. Practical clinical biochemistry, 1, 45-7.
Google Scholar
[26]
Dooumas, Basil T., W. Ard Watson, and Homer G. Biggs. "Albumin standards and the measurement of serum albumin with bromcresol green." Clinica chimica acta 31.1 (1971): 87-96.
DOI: 10.1016/0009-8981(71)90365-2
Google Scholar
[27]
Goldenberg, H., & Drewes, P. A. (1971). Direct photometric determination of globulin in serum. Clinical chemistry, 17(5), 358-362.
DOI: 10.1093/clinchem/17.5.358
Google Scholar
[28]
Ogunsanmi, A.O., S.O. Akpavie, and V.O. Anosa. 1994. Serum biochemical changes in West African dwarf sheep experimentally infected with Trypanosoma brucei. Rev. Elev. Med. Vet. Pays Trop. 47(2):195–200.
DOI: 10.19182/remvt.9109
Google Scholar
[29]
Toro, G. and Ackermann, P.G. (1975): Practical Clinical chemistry. 1st edition Little Brown and Co. Boston
Google Scholar
[30]
Ala, A., Walker, A. P., Ashkan, K., Dooley, J. S., & Schilsky, M. L. (2007). Wilson's disease. The Lancet, 369(9559), 397-408.
DOI: 10.1016/s0140-6736(07)60196-2
Google Scholar
[31]
Nisha, R., Srinivasa, K.S.R., Thanga, M.K. and Jagatha, P. (2017): Biochemical evaluation of creatinine and urea in patients with renal failure undergoing hemodialysis. J. Clin. Path. Lab. Med., 1(2):1-5.
Google Scholar
[32]
Zurovsky, Y. and Haber, C. (1995): Antioxidants attenuate endotoxin-generation induced acute renal failure in rats. Scand J. Urol. Nephrol., 29:147-154.
DOI: 10.3109/00365599509180555
Google Scholar
[33]
Akomolafe, R.O., Olukiran, O.S., Imafidon, C.E., Ayannuga, O.A., Oyekunle, J.A., Akanji, B.O. and Oladele, A.A. (2014): Astudy of two weeks administration of copper sulphate on markers of renal function and feeding pattern of wister rats. African Journal of Biochemistry Research, 8(9):158-165.
DOI: 10.1016/j.ejbas.2016.07.002
Google Scholar
[34]
Sinkovic, A., Strdin, A. and Svensek, F. (2008): Severe acute copper sulphatepoisoning: A case report. ARH. High. Rada. Toksikol., 59(1):31-35.
Google Scholar
[35]
Lei, R.H., Wu, C.Q., Yang, B.H., Ma, H.Z., Shi, C., Wang, Q.J., Wang, Q.X., Yuan, Y. and Liao, M.Y. (2008): Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicol. Appl. Pharm., 232(2):292– 301.
DOI: 10.1016/j.taap.2008.06.026
Google Scholar
[36]
Giordano, P.C., Johnson, W.L., Manning, W.D., Longmore, M.A. and Minter, M.D. (2015): Intimate Partner Violence in Young Adulthood: Narratives of Persistence and Desistance. Criminology, 1;53(3): 330–365.
DOI: 10.1111/1745-9125.12073
Google Scholar
[37]
Hassan, S., Shaikh, M.U., Ali, N. and Riaz, M. (2010): Copper sulphate toxicity in a young male complicated by methemoglobinemia, rhabdomyolysis and renal failure. J. Coll. Phys. Surg-Pak: JCPSP., 20(7):490–491.
Google Scholar
[38]
Galhardi, C.M., Diniz, Y.S., Faine, L.A., Rodrigues, H.G., Burneiko, R.C., Ribas, B.O. and Novelli, E.L. (2004): Toxicity of copperintake:lipid profile, oxidative stress,, and susceptibility to renal dysfunction. Food. chem. toxicol., 42(12):2053-2060.
DOI: 10.1016/j.fct.2004.07.020
Google Scholar
[39]
Govindwar, S.P. and Dalvi, R.R. (1990): Age dependent Toxicity of a corn extract in young and old male rats.Vet. Hum. Toxicol., 32:23-26.
Google Scholar
[40]
Pari, L. and Murugan, P. (2004): Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity. Pharmacol. Res., 49(5):481-486.
DOI: 10.1016/j.phrs.2003.11.005
Google Scholar
[41]
Mladenović, M.J., Paunović, M.G., Matić1, M.M., Knežev, V.S., Ognjanović, B.I., Štajn, A.Š. and Saičić, Z.S. (2014): Copper-induced changes of lipid peroxidation and hemato-biochemical parameters in rat blood: protective role of flavonoids. Arch. Biol. Sci., Belgrade, 66 (3):1271-1279.
DOI: 10.2298/abs1403271m
Google Scholar
[42]
El-Masry, A.A. (2012):Toxicity and hepatorenal response to acute copper exposure in rats. Glob. Adv. Res. J. Biochem. Bioinform.,1(1):1–6.
Google Scholar