Hepatocellular Effect of Copper Poisoning on the Liver and Kidney of Albino Rats (Rattus norvicus)

Article Preview

Abstract:

Copper and its salt are remarkably non-toxic to mammalian tissue. It is possible to ingest a large number of soluble copper salts such as copper sulphide to produce intoxication, nausea, vomiting, diarrhoea, and abdominal cramp. Copper salts are widely employed in agriculture and veterinary practice. Copper is an essential trace element in life and is a component of several metalloenzymes and other proteins such as cytochrome oxidase, heamocyanin, lysin oxidase, ascorbate oxidase and amine oxidase. When copper is present in the body above a particular dosage of greater than 100ppm in rats, it becomes fatal to rats. Copper is transported by blood, and is distributed to tissue and organs which have different retention capacities with the highest level of copper found in the liver, kidney, spleen and lungs. This study investigated the toxicological effect of copper in the liver and kidney of animals, using albino rats as the experimental animal. The serum chemistry report showed that the protein value of the liver homogenate for most of the experimental rats was higher than that of the control whereas the value of globulin for the control was similar to that of the experimental rats. The kidney homogenate revealed that Calcium ion has higher contents in the experimental rats than that in the control. In conclusion, the effect of copper varies with the groups of rats as compared to the control.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 2)

Pages:

29-37

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ruyters, S., Salaets, P., Oorts, K., & Smolders, E. (2013). Copper toxicity in soils under established vineyards in Europe: a survey. Science of the Total Environment, 443, 470-477.

DOI: 10.1016/j.scitotenv.2012.11.001

Google Scholar

[2] Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., ... & Shaheen, Z. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. Journal of pharmaceutical sciences and research, 7(3), 89.

Google Scholar

[3] Millan J, Mateo R, Taggart MA, López-Bao JV, Viota M, Monsalve L et al (2008) Levels of heavy metals and metalloids in critically endangered Iberian lynx and other wild carnivores from southern Spain. Sci Total Environ 399:193–201

DOI: 10.1016/j.scitotenv.2008.03.038

Google Scholar

[4] Hernandez LM, Gomara B, Fernandez M, Jimenez B, Gonzalez MJ, Baos R et al (1999) Accumulation of heavy metals and as in wetland birds in the area around Donana National Park affected by the Aznalcollar toxic spill. Sci Total Environ 242:293–308

DOI: 10.1016/s0048-9697(99)00397-6

Google Scholar

[5] Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. CRC Press, Boca Raton, FL, 468 pp

DOI: 10.1201/b18198-57

Google Scholar

[6] Szatnik-Kloc A (2014) Application of adsorption methods to determine the effect of pH and Cu-stress on the changes in the surface properties of the roots.IntAgrophys 28:511–520

DOI: 10.2478/intag-2014-0041

Google Scholar

[7] Kovačič G, Lešnik RM, Vršič S (2013) An overview of the copper situation and usage in viticulture. Bulg J AgricSci 19:50–55

Google Scholar

[8] Yruela, I. (2009). Copper in plants: acquisition, transport and interactions. Functional Plant Biology, 36(5), 409-430.

DOI: 10.1071/fp08288

Google Scholar

[9] Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

DOI: 10.1007/s10311-010-0297-8

Google Scholar

[10] Xu, Y., Yu, W., Ma, Q., & Zhou, H. (2013). Accumulation of copper and zinc in soil and plant within ten-year application of different pig manure rates. Plant, soil and environment, 59(11), 492-499.

DOI: 10.17221/121/2013-pse

Google Scholar

[11] Ashish B, Neeti K, Himanshu K. Copper toxicity: A comprehensive study. Res J Recent Sci. 2013;2277:2502

Google Scholar

[12] Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., ... & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22, 8148-8162.

DOI: 10.1007/s11356-015-4496-5

Google Scholar

[13] Kopittke, P. M., Menzies, N. W., de Jonge, M. D., McKenna, B. A., Donner, E., Webb, R. I., ... & Lombi, E. (2011). In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiology, 156(2), 663-673.

DOI: 10.1104/pp.111.173716

Google Scholar

[14] Lequeux, H., Hermans, C., Lutts, S., & Verbruggen, N. (2010). Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48(8), 673-682

DOI: 10.1016/j.plaphy.2010.05.005

Google Scholar

[15] Marastoni, L., Sandri, M., Pii, Y., Valentinuzzi, F., Brunetto, G., Cesco, S., & Mimmo, T. (2019). Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping. Chemosphere, 214, 563-578.

DOI: 10.1016/j.chemosphere.2018.09.127

Google Scholar

[16] Brunetto, G., de Melo, G. W. B., Terzano, R., Del Buono, D., Astolfi, S., Tomasi, N., ... & Cesco, S. (2016). Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162, 293-307.

DOI: 10.1016/j.chemosphere.2016.07.104

Google Scholar

[17] Jungwirth, C.R. B.K. Kowol, C.G. Keppler, W. Hartinger, P. Berger, P. Heffeter, Anticancer activity of metal complexes: involvement of redox processes, Antioxid. Redox Signal. 15 (2011) 1085–1127

DOI: 10.1089/ars.2010.3663

Google Scholar

[18] Cendrowska-Pinkosz, M., Krauze, M., Juśkiewicz, J., Fotschki, B., & Ognik, K. (2023). The Influence of Copper Nanoparticles on Neurometabolism Marker Levels in the Brain and Intestine in a Rat Model. International Journal of Molecular Sciences, 24(14), 11321..

DOI: 10.3390/ijms241411321

Google Scholar

[19] Cruch, P.J. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease, Int. J. Biochem. Cell Biol. 40 (2008) 181–198, https://doi.org/10.1016/j. biocel.2007.07.013

Google Scholar

[20] Saman K, Abida F, Danish DD, MI MM, Akif Z. Biosorption of copper(II) from aqueous solution using citrus sinensis peel and wood sawdust: Utilization in the purification of drinking and wastewater. IJRRAS. 2013;16:297-306

Google Scholar

[21] Ognik, K. E. Cholewinska, ´ J. Ju´skiewicz, Z. Zdunczyk, ´ K. Tutaj, R. Szlązak, (2019) The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model, J. Anim. Phys. Anim. Nutr. 103 675–686

DOI: 10.1111/jpn.13025

Google Scholar

[22] Nasution, S. W., Yerizel, E., Chaidir, Z., &Zein, R. (2020). Protection Effects of Nothopanaxscutellarium on Hepatotoxicity of Copper (II) Induced to Experimental Rats. Open Access Macedonian Journal of Medical Sciences, 8(A), 283-286.

DOI: 10.3889/oamjms.2020.4238

Google Scholar

[23] Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology, 28(1), 56-63.

DOI: 10.1093/ajcp/28.1.56

Google Scholar

[24] Dumas BT, Watson WA, Biggs HG (1997) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 258:21–30

DOI: 10.1016/s0009-8981(96)06447-9

Google Scholar

[25] Reinhold, J. (1953). Determination of serum total protein, albumin and globulin fractions by the biuret method. Practical clinical biochemistry, 1, 45-7.

Google Scholar

[26] Dooumas, Basil T., W. Ard Watson, and Homer G. Biggs. "Albumin standards and the measurement of serum albumin with bromcresol green." Clinica chimica acta 31.1 (1971): 87-96.

DOI: 10.1016/0009-8981(71)90365-2

Google Scholar

[27] Goldenberg, H., & Drewes, P. A. (1971). Direct photometric determination of globulin in serum. Clinical chemistry, 17(5), 358-362.

DOI: 10.1093/clinchem/17.5.358

Google Scholar

[28] Ogunsanmi, A.O., S.O. Akpavie, and V.O. Anosa. 1994. Serum biochemical changes in West African dwarf sheep experimentally infected with Trypanosoma brucei. Rev. Elev. Med. Vet. Pays Trop. 47(2):195–200.

DOI: 10.19182/remvt.9109

Google Scholar

[29] Toro, G. and Ackermann, P.G. (1975): Practical Clinical chemistry. 1st edition Little Brown and Co. Boston

Google Scholar

[30] Ala, A., Walker, A. P., Ashkan, K., Dooley, J. S., & Schilsky, M. L. (2007). Wilson's disease. The Lancet, 369(9559), 397-408.

DOI: 10.1016/s0140-6736(07)60196-2

Google Scholar

[31] Nisha, R., Srinivasa, K.S.R., Thanga, M.K. and Jagatha, P. (2017): Biochemical evaluation of creatinine and urea in patients with renal failure undergoing hemodialysis. J. Clin. Path. Lab. Med., 1(2):1-5.

Google Scholar

[32] Zurovsky, Y. and Haber, C. (1995): Antioxidants attenuate endotoxin-generation induced acute renal failure in rats. Scand J. Urol. Nephrol., 29:147-154.

DOI: 10.3109/00365599509180555

Google Scholar

[33] Akomolafe, R.O., Olukiran, O.S., Imafidon, C.E., Ayannuga, O.A., Oyekunle, J.A., Akanji, B.O. and Oladele, A.A. (2014): Astudy of two weeks administration of copper sulphate on markers of renal function and feeding pattern of wister rats. African Journal of Biochemistry Research, 8(9):158-165.

DOI: 10.1016/j.ejbas.2016.07.002

Google Scholar

[34] Sinkovic, A., Strdin, A. and Svensek, F. (2008): Severe acute copper sulphatepoisoning: A case report. ARH. High. Rada. Toksikol., 59(1):31-35.

Google Scholar

[35] Lei, R.H., Wu, C.Q., Yang, B.H., Ma, H.Z., Shi, C., Wang, Q.J., Wang, Q.X., Yuan, Y. and Liao, M.Y. (2008): Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicol. Appl. Pharm., 232(2):292– 301.

DOI: 10.1016/j.taap.2008.06.026

Google Scholar

[36] Giordano, P.C., Johnson, W.L., Manning, W.D., Longmore, M.A. and Minter, M.D. (2015): Intimate Partner Violence in Young Adulthood: Narratives of Persistence and Desistance. Criminology, 1;53(3): 330–365.

DOI: 10.1111/1745-9125.12073

Google Scholar

[37] Hassan, S., Shaikh, M.U., Ali, N. and Riaz, M. (2010): Copper sulphate toxicity in a young male complicated by methemoglobinemia, rhabdomyolysis and renal failure. J. Coll. Phys. Surg-Pak: JCPSP., 20(7):490–491.

Google Scholar

[38] Galhardi, C.M., Diniz, Y.S., Faine, L.A., Rodrigues, H.G., Burneiko, R.C., Ribas, B.O. and Novelli, E.L. (2004): Toxicity of copperintake:lipid profile, oxidative stress,, and susceptibility to renal dysfunction. Food. chem. toxicol., 42(12):2053-2060.

DOI: 10.1016/j.fct.2004.07.020

Google Scholar

[39] Govindwar, S.P. and Dalvi, R.R. (1990): Age dependent Toxicity of a corn extract in young and old male rats.Vet. Hum. Toxicol., 32:23-26.

Google Scholar

[40] Pari, L. and Murugan, P. (2004): Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity. Pharmacol. Res., 49(5):481-486.

DOI: 10.1016/j.phrs.2003.11.005

Google Scholar

[41] Mladenović, M.J., Paunović, M.G., Matić1, M.M., Knežev, V.S., Ognjanović, B.I., Štajn, A.Š. and Saičić, Z.S. (2014): Copper-induced changes of lipid peroxidation and hemato-biochemical parameters in rat blood: protective role of flavonoids. Arch. Biol. Sci., Belgrade, 66 (3):1271-1279.

DOI: 10.2298/abs1403271m

Google Scholar

[42] El-Masry, A.A. (2012):Toxicity and hepatorenal response to acute copper exposure in rats. Glob. Adv. Res. J. Biochem. Bioinform.,1(1):1–6.

Google Scholar