[1]
O. Ayetigbo, S. Latif, A. Abass, & J. Müller, (2018). Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability, 10(9), 3089.
DOI: 10.3390/su10093089
Google Scholar
[2]
T. A. Adeyemo, & V. O. Okoruwa, (2018). Value Addition and Productivity Differentials in the Nigerian Cassava System. Sustainability, 10(12), 4770.
DOI: 10.3390/su10124770
Google Scholar
[3]
S. Y Atsyo, C. Korkmaz, O. B Ozluoymak, & E. Guzel, (2020). A review of physical and mechanical properties of cassava related to harvesting machines. Int J Sci Technol, 6, 102-118.
Google Scholar
[4]
T. Buyinza, & L. Kitinoja, (2018). Commodity Systems Assessment of Cassava in Uganda.
Google Scholar
[5]
C. K. Kakwu, (2018). Parboiling and Soaking of Cassava to Reduce Cyanide Contents Of Crisps (Doctoral dissertation, University of Nairobi).
Google Scholar
[6]
T. Yezekyan, F.Marinello, G. Armentano, S. Trestini, , & L. Sartori, (2020). Modelling of harvesting machines' technical parameters and prices. Agriculture, 10(6), 194.
DOI: 10.3390/agriculture10060194
Google Scholar
[7]
N. Akram, M. W Akram, & W. Hongshu, (2020). Study on the socioeconomic factors affecting adoption of agricultural machinery. Journal of Economics and Sustainable Development, 11(3).
Google Scholar
[8]
O.D. Isinkaye, O.O. Koyenikan, & T. Osadare, (2021). Development of a Cassava Harvester. Development, 4(1), 12-21.
Google Scholar
[9]
C. A. Alesso, P. A. Cipriotti, M. J. Masola, M. E. Carrizo, S. C. Imhoff, L. Rocha-Meneses, & D. L. Antille, (2020). Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques.
Google Scholar
[10]
V. Kumar, V. Bector, & M. Singh, (2022). Stress analysis of the critical components of the hydraulically operated soil sensor system for measuring soil compaction and electrical conductivity of soil using finite element method (FEM). Measurement: Sensors, 100367.
DOI: 10.1016/j.measen.2022.100367
Google Scholar
[11]
S. R. Chinnu, M. Favazil, C. Rachana, & P.R. Jayan, (2018). Development and Testing of Mini Tractor Operated Coleus Digger (Doctoral dissertation, Department of Farm Power and Machinery).
Google Scholar
[12]
M.A. Anikwe, & E.E. Ikenganyia, (2018). Ecophysiology and production principles of cassava (Manihot species) in Southeastern Nigeria. Cassava. Sidney, Australian College of Business & Technology, 105-122.
DOI: 10.5772/intechopen.70828
Google Scholar
[13]
A. Cherian, & A. J. Sabu, DESIGN OF CASSAVA UPROOTING DEVICE.
Google Scholar
[14]
L.A.S. AGBETOYE, (2016). Mechanized Agriculture: A Route to Enhanced Food Security.
Google Scholar
[15]
S. PATEL, & P.R. Jayan, (2021). Design Analysis of a Manual Cassava Harvesting Tool (Doctoral dissertation, DEPARTMENT OF FARM MACHINERY AND POWER ENGINEERING).
Google Scholar
[16]
S.R. Chinnu, M. Favazil, C. Rachana, & P. R Jayan, (2018). Development and Testing of Mini Tractor Operated Coleus Digger (Doctoral dissertation, Department of Farm Power and Machinery).
Google Scholar
[17]
S.K. Amponsah, A. Addo, & B. Gangadharan, (2018). Review of various harvesting options for cassava. Cassava, 291.
DOI: 10.5772/intechopen.71350
Google Scholar
[18]
I. A. Ola, A. F. Adisa, I. L. Ubaka-Ojogwu, J. O. Solomon, J. A. Ojediran, & E. S. A. Ajisegiri, (2019). Performance Evaluation of Selected Cassava Roots Harvesters. Journal of Engineering Research, 24(1), 40-52.
Google Scholar
[19]
A. S. Phyo, C. M. Grunbuhel, L. Williams, & S. S Htway, (2009, November). Does Selective Mechanisation Make up for Labour Shortages in Rural Myanmar?.In IOP Conference Series: Earth and Environmental Science (Vol. 338, No. 1, p.012010). IOP Publishing.
DOI: 10.1088/1755-1315/338/1/012010
Google Scholar
[20]
J.O. Dirisu, A.A. Asere, J.A. Oyekunle, B.Z. Adewole, O.O. Ajayi, S.A. Afolalu, O.O. Joseph, & A.A. Abioye, (2017). Comparison of the Elemental Structure and Emission Characteristics of Selected PVC and Non PVC Ceiling Materials Available in Nigerian Markets. International Journal of Applied Engineering Research. 12(23), 13755-13758.
DOI: 10.1166/mat.2018.1544
Google Scholar
[21]
M.A. Fajobi, A.A. Abioye, O. P. Abioye, O. O. Ajayi, S. A. Afolalu, and P. O. Atanda, Mechanical and Microstructural Characterization of Ductile Iron Produced from Fuel- Fired Rotary Furnace, International Journal of Mechanical Engineering and Technology 9(1), 2018. p.694–704
Google Scholar
[22]
E.Y. Salawu, I.P. Okokpujie, S.A. Afolalu, O.O. Ajayi, and J. Azeta, 2018. Investigation of Production Output for Improvement. International Journal of Mechanical and Production Engineering Research and Development, 8(1), pp.915-922
Google Scholar
[23]
I.P. Okokpujie, S.A. Afolalu, A. A. Abioye, J. O. Dirisu, O. O. Ajayi, & O. R. Adetunji, (2018, April). Investigation of wear land and rate of locally made HSS cutting tool. In AIP Conference Proceedings (Vol. 1957, No. 1, p.050002). AIP Publishing.
DOI: 10.1063/1.5034332
Google Scholar
[24]
Islamov, S., Grigoriev, A., Beloglazov, I., Savchenkov, S., & Gudmestad, O. T. (2021). Research risk factors in monitoring well drilling—A case study using machine learning methods. Symmetry, 13(7), 1293.
DOI: 10.3390/sym13071293
Google Scholar
[25]
A. Jaguljnjak Lazarević, M. Uroš, & A. Čengija, (2017). Fundamental models of structural stability. Rudarsko-geološko-naftni zbornik, 32(2), 37-46.
DOI: 10.17794/rgn.2017.2.5
Google Scholar
[26]
I.P. Okokpujie, S.A. Afolalu, O.P. Abioye, E.Y. Salawu, A.A. Abioye, O.A. Omotosho, & O.O. Ajayi, (2018, April). Impact of heat treatment on HSS cutting tool (ASTM A600) and its behavior during machining of mild steel (ASTM A36). In AIP Conference Proceedings (Vol. 1957, No. 1, p.050003). AIP Publishing.
DOI: 10.1063/1.5034333
Google Scholar
[27]
I.P. Okokpujie, S.A. Afolalu, E.Y. Salawu, A.A. Abioye, O.P. Abioye, & Ikumapayi, O. M. (2018, April). Study of the performances of nano-case treatment cutting tools on carbon steel work material during turning operation. In AIP Conference Proceedings (Vol. 1957, No. 1, p.050001). AIP Publishing.
DOI: 10.1063/1.5034331
Google Scholar
[28]
M.O. Udo, D.E. Esezobor, F.I. Apeh, & A. S. Afolalu, (2018). Factors Affecting Ballability of Mixture Iron Ore Concentrates and Iron Oxide Bearing Wastes in Metallurgical Processing. Journal of Ecological Engineering Vol, 19, 3.
DOI: 10.12911/22998993/86158
Google Scholar
[29]
E. Navas, R. Fernandez, D. Sepúlveda, M. Armada, & P. Gonzalez-de-Santos, (2020). A design criterion based on shear energy consumption for robotic harvesting tools. Agronomy, 10(5), 734.
DOI: 10.3390/agronomy10050734
Google Scholar
[30]
A. Berg, & J. Sheffield, (2018). Climate change and drought: the soil moisture Perspective. Current Climate Change Reports, 4(2), 180-191.
DOI: 10.1007/s40641-018-0095-0
Google Scholar
[31]
P. Catania, L. Badalucco, V. A. Laudicina, & M. Vallone, (2018). Effects of tilling methods on soil penetration resistance, organic carbon and water-stable aggregates in a vineyard of the semiarid Mediterranean environment. Environmental Earth Sciences, 77(9), 1-9.
DOI: 10.1007/s12665-018-7520-5
Google Scholar