The Characteristics of Moisture and Hardness of the Coffee Bean with Different Treatment Related to Roasting and Storage Time: Study Case from Coffee Arabica and Coffee Canephora

Article Preview

Abstract:

This study evaluates the effect of varying roasting times and storage durations on the moisture content and hardness of Coffea arabica and Coffea canephora beans. Heat treatment was applied at a temperature of 250°C for 5, 10, 15, and 20 minutes, followed by moisture testing using a Moisture Analyzer and hardness testing with a Shore A durometer. The results showed a significant decrease in moisture content as roasting time increased, with the largest reduction observed after 20 minutes of roasting. After one week of storage in airtight containers, all samples exhibited an increase in moisture content, although beans with longer roasting times maintained lower moisture levels compared to unroasted beans. Hardness measurements did not reveal a consistent pattern related to roasting time, but all samples registered values above 80 Shore A. This study provides insights into the impact of heat treatment and storage on the physical characteristics of coffee beans, which is relevant for optimizing the quality of the final product.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] M. C. Karam, J. Petit, D. Zimmer, E. B. Djantou, and J. Scher, "Effects of drying and grinding in production of fruit and vegetable powders: A review," J. Food Eng., vol. 188, p.32–49, 2016.

DOI: 10.1016/j.jfoodeng.2016.05.001

Google Scholar

[2] B. A. Weinberg and B. K. Bealer, The world of caffeine: the science and culture of the world's most popular drug. Routledge, 2004.

Google Scholar

[3] A. Farah, "Flavor development during roasting," in Drying and Roasting of Cocoa and Coffee, CRC press, 2019, p.267–309.

DOI: 10.1201/9781315113104-9

Google Scholar

[4] S. Viljoen, "Sensory profiling of selected Arabica coffees (Coffea arabica) of different Africa origins." University of Pretoria (South Africa), 2019.

Google Scholar

[5] L. Poisson, I. Blank, A. Dunkel, and T. Hofmann, "The chemistry of roasting—Decoding flavor formation," in The craft and science of coffee, Elsevier, 2017, p.273–309.

DOI: 10.1016/b978-0-12-803520-7.00012-8

Google Scholar

[6] E. Nebesny and G. Budryn, "Evaluation of sensory attributes of coffee brews from robusta coffee roasted under different conditions," Eur. Food Res. Technol., vol. 224, p.159–165, 2006.

DOI: 10.1007/s00217-006-0308-y

Google Scholar

[7] J. B. Park, R. Peters, and J. A. Novotny, "Impact of roasting on javamide-I/-II in Arabica and Robusta coffee beans," Food Chem., vol. 412, p.135586, 2023.

DOI: 10.1016/j.foodchem.2023.135586

Google Scholar

[8] G. Won Kang, Z. (Zoey) Piao, and J. Youn Ko, "Effects of water types and roasting points on consumer liking and emotional responses toward coffee," Food Qual. Prefer., vol. 101, p.104631, 2022.

DOI: 10.1016/j.foodqual.2022.104631

Google Scholar

[9] L. Anokye-Bempah, J. Han, K. Kornbluth, W. Ristenpart, and I. R. Donis-González, "The use of desiccants for proper moisture preservation in green coffee during storage and transportation," J. Agric. Food Res., vol. 11, p.100478, 2023.

DOI: 10.1016/j.jafr.2022.100478

Google Scholar

[10] A. Hameed, S. A. Hussain, M. U. Ijaz, S. Ullah, I. Pasha, and H. A. R. Suleria, "Farm to consumer: factors affecting the organoleptic characteristics of coffee. II: postharvest processing factors," Compr. Rev. Food Sci. Food Saf., vol. 17, no. 5, p.1184–1237, 2018.

DOI: 10.1111/1541-4337.12365

Google Scholar

[11] P. C. Corrêa, G. H. H. Oliveira, P. L. Rodrigues, S. C. Campos, and F. M. Botelho, "Hygroscopic equilibrium and physical properties evaluation affected by parchment presence of coffee grain," Spanish J. Agric. Res., vol. 8, no. 3, p.694–702, 2010.

DOI: 10.5424/sjar/2010083-1267

Google Scholar

[12] S. Smrke, J. Adam, S. Mühlemann, I. Lantz, and C. Yeretzian, "Effects of different coffee storage methods on coffee freshness after opening of packages," Food Packag. Shelf Life, vol. 33, p.100893, 2022.

DOI: 10.1016/j.fpsl.2022.100893

Google Scholar

[13] E. Makri, D. Tsimogiannis, E. K. Dermesonluoglu, and P. S. Taoukisa, "Modeling of Greek coffee aroma loss during storage at different temperatures and water activities," Procedia Food Sci., vol. 1, p.1111–1117, 2011.

DOI: 10.1016/j.profoo.2011.09.166

Google Scholar

[14] P. Tapangnoi, P. Sae-Oui, W. Naebpetch, and C. Siriwong, "Preparation of purified spent coffee ground and its reinforcement in natural rubber composite," Arab. J. Chem., vol. 15, no. 7, p.103917, 2022.

DOI: 10.1016/j.arabjc.2022.103917

Google Scholar

[15] S. B. Kang, H. Y. Oh, J. J. Kim, and K. S. Choi, "Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW)," Renew. Energy, vol. 113, p.1208–1214, 2017.

DOI: 10.1016/j.renene.2017.06.092

Google Scholar

[16] R. Campos-Vega, G. Loarca-Piña, H. A. Vergara-Castañeda, and B. D. Oomah, "Spent coffee grounds: A review on current research and future prospects," Trends Food Sci. Technol., vol. 45, no. 1, p.24–36, 2015.

DOI: 10.1016/j.tifs.2015.04.012

Google Scholar

[17] M. Charai, O. Horma, A. El Hammouti, A. Mezrhab, and M. Karkri, "Thermophysical characteristics of cement-based mortar incorporating spent coffee grounds," Mater. Today Proc., vol. 57, p.867–870, 2022.

DOI: 10.1016/j.matpr.2022.02.488

Google Scholar

[18] N. A. Febrianto and F. Zhu, "Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties," Food Chem., vol. 412, p.135489, 2023.

DOI: 10.1016/j.foodchem.2023.135489

Google Scholar

[19] H. Sosiati, M. Kosasih, A. Pamasti, R. K. Adi, S. Hamdan, and Y. Yusuf, "Properties of Abaca/Epoxy Composites Modified by Activated Carbon Particles for Orthosis Application," BioResources, vol. 18, no. 4, p.7510–7523, 2023.

DOI: 10.15376/biores.18.4.7510-7523

Google Scholar

[20] A. D. Nugraha et al., "Investigating the mechanical properties and crashworthiness of Hybrid PLA/GFRP Composites Fabricated Using FDM-Filament Winding," Heliyon, 2024.

DOI: 10.1016/j.heliyon.2024.e39062

Google Scholar

[21] H. Sosiati, A. M. Rizky, A. L. M. Latief, R. K. Adi, and S. Hamdan, "The mechanical and physical properties of microcrystalline cellulose (MCC)/sisal/PMMA hybrid composites for dental applications," Mater. Res. Express, vol. 10, no. 3, p.35301, 2023.

DOI: 10.1088/2053-1591/acbb57

Google Scholar

[22] M. Ho et al., "Critical factors on manufacturing processes of natural fibre composites," Compos. Part B Eng., vol. 43, no. 8, p.3549–3562, 2012.

Google Scholar

[23] F. Ma et al., "Determining peanut moisture content by scattering coefficient," J. Food Eng., vol. 344, p.111398, 2023.

DOI: 10.1016/j.jfoodeng.2022.111398

Google Scholar

[24] G. A. Collazos-Escobar, N. Gutiérrez-Guzmán, H. A. Váquiro-Herrera, J. Bon, and J. V Garcia-Perez, "Thermodynamic analysis and modeling of water vapor adsorption isotherms of roasted specialty coffee (Coffee arabica L. cv. Colombia)," LWT, vol. 160, p.113335, 2022.

DOI: 10.1016/j.lwt.2022.113335

Google Scholar

[25] B. Zani Agnoletti et al., "Effect of fermentation on the quality of conilon coffee (Coffea canephora): Chemical and sensory aspects," Microchem. J., vol. 182, p.107966, 2022.

DOI: 10.1016/j.microc.2022.107966

Google Scholar

[26] N. Caporaso, M. B. Whitworth, S. Grebby, and I. D. Fisk, "Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging," J. Food Eng., vol. 227, p.18–29, 2018.

DOI: 10.1016/j.jfoodeng.2018.01.009

Google Scholar

[27] Y. Sun, Y. Huang, T. Lu, and X. Chen, "Temporal kinetics of changes in color, phytochemicals, γ-aminobutyric acid, enzyme activity and antioxidant activity of coffee leaves during postharvest storage," Sci. Hortic. (Amsterdam)., vol. 304, p.111360, 2022.

DOI: 10.1016/j.scienta.2022.111360

Google Scholar

[28] P. Tripetch and C. Borompichaichartkul, "Effect of packaging materials and storage time on changes of colour, phenolic content, chlorogenic acid and antioxidant activity in arabica green coffee beans (Coffea arabica L. cv. Catimor)," J. Stored Prod. Res., vol. 84, p.101510, 2019.

DOI: 10.1016/j.jspr.2019.101510

Google Scholar

[29] A. N. Yüksel, K. T. Özkara Barut, and M. Bayram, "The effects of roasting, milling, brewing and storage processes on the physicochemical properties of Turkish coffee," LWT, vol. 131, p.109711, 2020.

DOI: 10.1016/j.lwt.2020.109711

Google Scholar

[30] G. F. Abreu, F. M. Borém, L. F. C. Oliveira, M. R. Almeida, and A. P. C. Alves, "Raman spectroscopy: A new strategy for monitoring the quality of green coffee beans during storage," Food Chem., vol. 287, p.241–248, 2019.

DOI: 10.1016/j.foodchem.2019.02.019

Google Scholar

[31] D. de C. Lopes and A. J. Steidle Neto, "Modelling the dry matter loss of coffee beans under different storage conditions," J. Stored Prod. Res., vol. 88, p.101669, 2020.

DOI: 10.1016/j.jspr.2020.101669

Google Scholar

[32] M. Y. Rendón, T. de Jesus Garcia Salva, and N. Bragagnolo, "Impact of chemical changes on the sensory characteristics of coffee beans during storage," Food Chem., vol. 147, p.279–286, 2014.

DOI: 10.1016/j.foodchem.2013.09.123

Google Scholar

[33] M. Maman, S. Sangchote, O. Piasai, W. Leesutthiphonchai, H. Sukorini, and N. Khewkhom, "Storage fungi and ochratoxin A associated with arabica coffee bean in postharvest processes in Northern Thailand," Food Control, vol. 130, p.108351, 2021.

DOI: 10.1016/j.foodcont.2021.108351

Google Scholar

[34] M. Okamura, M. Soga, Y. Yamada, K. Kobata, and D. Kaneda, "Development and evaluation of roasting degree prediction model of coffee beans by machine learning," Procedia Comput. Sci., vol. 192, p.4602–4608, 2021.

DOI: 10.1016/j.procs.2021.09.238

Google Scholar

[35] W. Dong et al., "Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS," Food Chem., vol. 272, p.723–731, 2019.

DOI: 10.1016/j.foodchem.2018.08.068

Google Scholar

[36] Y. Wang et al., "Anaerobic germination of green coffee beans: A novel strategy to improve the quality of commercial Arabica coffee," Curr. Res. Food Sci., vol. 6, p.100461, 2023.

DOI: 10.1016/j.crfs.2023.100461

Google Scholar

[37] M. Anese et al., "Influence of coffee roasting degree on inflammatory and oxidative stress markers in high-fructose and saturated fat-fed rats," Food Res. Int., vol. 165, p.112530, 2023.

DOI: 10.1016/j.foodres.2023.112530

Google Scholar

[38] N. K. Donovan, K. A. Foster, and C. A. Parra Salinas, "Analysis of green coffee quality using hermetic bag storage," J. Stored Prod. Res., vol. 80, p.1–9, 2019.

DOI: 10.1016/j.jspr.2018.11.003

Google Scholar

[39] F. C. Ribeiro, F. M. Borém, G. S. Giomo, R. R. De Lima, M. R. Malta, and L. P. Figueiredo, "Storage of green coffee in hermetic packaging injected with CO2," J. Stored Prod. Res., vol. 47, no. 4, p.341–348, 2011.

DOI: 10.1016/j.jspr.2011.05.007

Google Scholar

[40] A. Alamsyah et al., "Blockchain traceability model in the coffee industry," J. Open Innov. Technol. Mark. Complex., vol. 9, no. 1, p.100008, 2023.

DOI: 10.1016/j.joitmc.2023.100008

Google Scholar

[41] P. M. M. Martins, N. N. Batista, L. D. Santos, D. R. Dias, and R. F. Schwan, "Microencapsulation of epiphytic coffee yeasts by spray drying using different wall materials: Implementation in coffee medium," Int. J. Food Microbiol., vol. 379, p.109839, 2022.

DOI: 10.1016/j.ijfoodmicro.2022.109839

Google Scholar

[42] A. A. Tassew, G. B. Yadessa, A. D. Bote, and T. K. Obso, "Influence of location, elevation gradients, processing methods, and soil quality on the physical and cup quality of coffee in the Kafa Biosphere Reserve of SW Ethiopia," Heliyon, vol. 7, no. 8, p. e07790, 2021.

DOI: 10.1016/j.heliyon.2021.e07790

Google Scholar

[43] H. Sosiati, A. M. Rizky, A. L. M. Latief, R. K. Adi, and S. Hamdan, "The mechanical and physical properties of microcrystalline cellulose (MCC)/sisal/PMMA hybrid composites for dental applications," Mater. Res. Express, vol. 10, no. 3, 2023.

DOI: 10.1088/2053-1591/acbb57

Google Scholar