Mechanical and Antibacterial Property Improvement of Mineral Trioxide Aggregate by Adding Cuo Nanoparticles

Article Preview

Abstract:

Mineral trioxide aggregate (MTA) is a common biomaterial used for endodontic treatment. However, this material does not have antibacterial activity, and the addition of an antibacterial agent is necessary. In this research, CuO nanoparticles (CuONP) have been added to MTA to improve the compressive strength and antibacterial activity. CuONP was synthesized by mixing 25 mL CuSO4.5H2O 0.5 M and Na2CO3 0.5 M at volume variations (15, 25, and 42 mL), sonicating the mixture at a temperature of 60 °C for 2 hours, and calcining at a temperature of 600 °C for 4 hours. MTA/CuO material was made by mixing MTA and CuONP at variations in weight percentage (1, 2, and 3%). CuONP, MTA, and MTA/CuO were characterized with Fourier Transform Infrared (FT-IR), X-ray diffractometer (XRD), and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX). The compressive strength and antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa were also tested. The results showed that CuONP was successfully synthesized with an average particle size of 21.94 nm. Adding CuONP 2% to MTA improved its compressive strength of 12.03±0.44 MPa. In addition, the presence of CuONP in the MTA gave the antibacterial property of S. aureus with an inhibition zone value of 6.69±0.67 mm for MTA/CuO-2 and 6.77±0.31 mm for MTA added with 3% of CuONP. However, adding CuONP did not increase significant antibacterial activity against P. Aeruginosa. Adding CuONP 3% increased the inhibition zone from 5.50±00 to 7.04±0.39 mm. The findings indicated that MTA modified with CuONP can potentially be applied for endodontic treatment even though further investigation is still necessary to test the biocompatibility and cytotoxicity.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 25)

Pages:

81-91

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Widyastuti and P.Santosa, Perawatan Saluran Akar dengan Instrumen Putar dan Restorasi Resin Penguat Fiber, Clin. Dent. J. 4 (2018) 9-19

Google Scholar

[2] A. Subrata, A.E. Prahasti, and B.O. Iskandar, Influence of Two Root Canal Obturation Techniques with Resin Based Sealer to Enterococcus faecalis Penetration, J. Dent. Indones. 2 (2019) 21-18.

DOI: 10.32793/jida.v2i1.358

Google Scholar

[3] J. Wong, D. Manoil, P. Näsman, G.N. Belibasakis, and Neelakantan, Microbiological Aspects of Root Canal Infections and Disinfection Strategies: An Update Review on the Current Knowledge and Challenges, Front. Oral. Health 2 (2021) 1-19.

DOI: 10.3389/froh.2021.672887

Google Scholar

[4] E. Febrianifa, W. Hadriyanto, and Y. Kristanti, Perbedaan Daya Antibakeri Siler Saluran Akar Berbahan Dasar Seng Oksida Eugenol, Resin Epoksi dan Mineral Trioxide Aggregate terhadap Enterococcus faecalis, J. Ked. Gi. 7 (2016) 41-47.

Google Scholar

[5] M. Perirokh, and M. Torabinejad, Mineral Trioxide Aggregate: A Comprehensive Literature Review Part I: Chemical, Physical, and Antibacterial Properties, J. Endod. 36 (2010) 16-27.

DOI: 10.1016/j.joen.2009.09.006

Google Scholar

[6] A.R. Pratama, and E. Mulyawati, Penggunaan MTA (Mineral Trioxide Aggregate) sebagai Bahan Pengisi Saluran Akar pada Gigi Insisivus Lateral Kiri Maksila dengan Perforasi Saluran Akar, Maj Ked Gi 17 (2010) 19-22.

DOI: 10.22146/majkedgiind.15978

Google Scholar

[7] A.S. Milani, S. Rahimi, Z. Borna, M.A. Jafarabadi, M. Bahari, and A.S. Deljavan, Fracture Resistance of Immature Teeth Filled with Mineral Trioxide Aggregate or Calcium-Enriched Mixture Cement: An Ex Vivo Study, Dent. Res. J. 9 (2012) 299-304.

DOI: 10.4317/jced.54075

Google Scholar

[8] J. Camilleri, Hydration Mechanisms of Mineral Trioxide Aggregate, Int. Endod. J. 40 (2007) 462-470.

DOI: 10.1111/j.1365-2591.2007.01248.x

Google Scholar

[9] I. Inajati, and R.T.E. Untara, Apeksifikasi dengan Mineral Trioxide Aggregate dan Perawatan Intracoronal Bleaching pada Gigi Insisivus Sentralis Kiri Maksila Non-Vital Diskolorasi, Maj Ked. Gi. Ind. 2 (2016) 101-108.

DOI: 10.22146/majkedgiind.11251

Google Scholar

[10] N.P. Solanki, K.K. Venkappa, and N.S. Shah, Biocompatibility and Sealing Ability of Mineral Trioxide Aggregate and Biodentine as Root-end Filling Material: A Systematic Review, J. Conserv. Dent. 21 (2018)10-15.

Google Scholar

[11] K. Al-Hezaimi, T.A. Al-Shalan, J. Naghshbandi, S. Oglesby, J.H. Simon, and I. Rotstein, Antibacterial Effect of Two Mineral Trioxide Aggregate (MTA) Preparations Against Enterococcus faecalis and Streptococcus sanguis In Vitro, J. Endod. 32 (2006) 1053-1056.

DOI: 10.1016/j.joen.2006.06.004

Google Scholar

[12] M.W.A. Wibowo, A.I. Yunita, L. Mukaromah, I. Kartini, N. Nuryono, Effect of titania and silver nanoparticles on the tensile strength of cement-like mineral trioxide aggregate, Mater. Sci. Forum, 1068 (2022) 183-188.

DOI: 10.4028/p-673652

Google Scholar

[13] M.A. Fakhriza, B. Rusdiarso, S. Sunarintyas, and N. Nuryono, The Addition of Copper Nanoparticles to Mineral Trioxide Aggregate for Improving the Physical and Antibacterial Properties, Indones. J. Chem., 23(3) (2023) 692 - 701.

DOI: 10.22146/ijc.79491

Google Scholar

[14] L. Wang, C. Hu, and L. Shao, The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future, Int. J. Nanomedicine 12 (2017) 1227-1249.

DOI: 10.2147/ijn.s121956

Google Scholar

[15] S. Sharmin, M. Rahaman, C. Sarkar, O. Atolani, M.T. Islam, and O.S. Adeyemi, Nanoparticles as Antimicrobial and Antiviral Agent: A Literature-Based Perspective Study, Heliyon 7 (2021) e06456.

DOI: 10.1016/j.heliyon.2021.e06456

Google Scholar

[16] D. Akhidime, F. Saubade, P. Benson, J. Butler, S. Olivier, P. Kelly, J. Verran, and K. Whitehead, The Antimicrobial Effect of Metal Substrates on Food Pathogens, Food Bioprod. Process. 113 (2018) 68-76.

DOI: 10.1016/j.fbp.2018.09.003

Google Scholar

[17] E. Ghasemian, A. Naghoni, H. Rahvar, M. Kialha, and B. Tabaraie, Evaluating the Effect of Copper Nanoparticles in Inhibiting Pseudomonas aeruginosa and Listeria monogtogenes Biofilm Formation, Jundishapur J. Microbiol. 8 (2015) 1-5.

DOI: 10.5812/jjm.17430

Google Scholar

[18] N. Raura, A. Garg, A. Arora, and M. Roma, Nanoparticle Technology and Its Implications in Endodontics: A Review, Biomater Res 24 (2020) 1-8.

DOI: 10.1186/s40824-020-00198-z

Google Scholar

[19] A. Nazari, M.H. Rafieipour, and S., Riahi, The Effects of CuO Nanoparticles on Properties of Self Compacting Concrete with GGBFS as Binder, Mater. Res. 14 (2011) 307-316.

DOI: 10.1590/s1516-14392011005000061

Google Scholar

[20] D. Das, B.C. Nath, P. Phukon, and S.K. Dolui, Synthesis and Evaluation of Antioxidant and Antibacterial Behavior of CuO Nanoparticles, Colloids Surf. B: Biointerfaces 101 (2013) 430-433.

DOI: 10.1016/j.colsurfb.2012.07.002

Google Scholar

[21] B.S. Lee, H.P. Lin, J.C.C. Chan, W.C. Wang, P.H. Hung, Y.H. Tsai, and Y.L. Lee, A Novel Sol Gel Derived Calcium Silicate Cement with Short Setting Time for Application in Endodontic Repair of Perforations, Int. J. Nanomed. 13 (2018) 261–271.

DOI: 10.2147/ijn.s150198

Google Scholar

[22] F. Bakhtiari, and E. Darezereshki, One-step Synthesis of Tenorite (CuO) Nanoparticles From Cu4(SO4)(OH)6 by Direct Thermal-Decomposition Method, Mater. Lett. 65 (2011) 171-174.

DOI: 10.1016/j.matlet.2010.09.071

Google Scholar

[23] M. Goudarzi, N. Mir, M. Mousavi-Kamazani, S. Bagheri, and M. Salavati-Niasari, Biosynthesis and Characterization of Silver Nanoparticles Prepared From Two Novel Natural Precursors by Facile Thermal Decomposition Methods, Sci. Rep. 6 (2016) 32539.

DOI: 10.1038/srep32539

Google Scholar

[24] A. Nazari, and S. Riahi, Effects of CuO Nanoparticles on Microstructure, Physical, Mechanical and Thermal Properties of Self-Compacting Cementitious Composites, J.. Mater. Sci. Technol. 27 (2011) 81-92.

DOI: 10.1016/s1005-0302(11)60030-3

Google Scholar

[25] F.B. Bastruk, M.H. Nekoofar, M. Gunday, and P.M.H. Dummer, X-ray Diffraction Analysis of MTA Mixed and Placed with Various Techniques, Clin. Oral Investig. 22 (2018) 1675-1680.

DOI: 10.1007/s00784-017-2241-9

Google Scholar

[26] S. Khan, M. Fareed, M. Kaleem, S. Uddin, and K. Iqbal, An Updated Review of Mineral Trioxide Aggregate Part-1: Compositional Analysis, Setting Reaction and Physical Properties, J. Pak Dent. Assoc. 23 (2014) 140-47.

Google Scholar

[27] J., Camilleri, Mineral Trioxide Aggregate: Present and Future Developments, Endod. Topics 32 (2015) 31-46.

DOI: 10.1111/etp.12073

Google Scholar

[28] X. Yu, C. Zhang, Q. Yang, and S. Kasap, Enhancement of Hardness in Nanostructured CuO/TiO2-Cement Composites, SN Appl.Sci. 2 (2020) 631.

DOI: 10.1007/s42452-020-2428-6

Google Scholar

[29] X. Ma, H. Chen, and P. Wang, Effect of CuO on the Formation of Clinker Minerals and the Hydration Properties, Cem. Concr. Res. 40 (2010)1681-1687.

DOI: 10.1016/j.cemconres.2010.08.009

Google Scholar

[30] I.M. El-Nahhal, J.K. Salem, S. Kuhn, T. Hammad, R. Hempelmannand, and S. Al-Bhaisi, Synthesis and Characterization of Silica-, Meso-Silica- and Their Functionalized Silica-Coanted Copper Oxide Nanomaterials, J. Sol-Gel. Sci. Technol. 79 (2016) 573-583.

DOI: 10.1007/s10971-016-4034-z

Google Scholar