Multi-Object Trajectory Prediction with Crossing Detection Using Interacting Multiple Model Kalman Filter

Article Preview

Abstract:

This research proposes an approach to trajectory prediction using the Interacting Multiple Model Kalman Filter (IMM-KF), which forecasts the future positions of multiple sur rounding objects and determines their crossing status - whether they will cross or stay on their paths. The method accommodates diverse object behaviors by integrating constant velocity and constant acceleration models. Building on previous work, this approach enhances the accuracy of trajectory prediction for maneuvering objects, enhancing decision-making capabilities for autonomous trams to improve safety. The proposed method, which integrates a trajectory motion model with the IMM-KF algorithm, has been validated through both simulations and real-world testing on a vehicle platform. The results demonstrate significant improvements in safety and risk assessment.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

403-412

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Lefevre, D. Vasquez, C. Laugier, A survey on motion prediction and risk assessment for intelligent vehicles, ROBOMECH J. 1 (2014) 1-14.

DOI: 10.1186/s40648-014-0001-z

Google Scholar

[2] S. Ammoun, F. Nashashibi, Real time trajectory prediction for collision risk estimation between vehicles, in: Proc. IEEE 5th Int. Conf. Intell. Comput. Commun. Process., 2009, pp.417-422.

DOI: 10.1109/iccp.2009.5284727

Google Scholar

[3] T. Kirubarajan, Y. Bar-Shalom, Kalman filter versus IMM estimator: when do we need the latter?, IEEE Trans. Aerosp. Electron. Syst. 39 (4) (2003) 1452-1457.

DOI: 10.1109/taes.2003.1261143

Google Scholar

[4] X. Chen, J. Gao, X. Han, An algorithm based on interacting multiple models for maneuvering target tracking, in: Proc. IEEE 7th Joint Int. Inf. Technol. Artif. Intell. Conf., 2014, pp.405-408.

DOI: 10.1109/itaic.2014.7065080

Google Scholar

[5] C. Barrios, H. Himberg, Y. Motai, A. Sadek, Multiple model framework of adaptive extended Kalman filtering for predicting vehicle location, in: Proc. IEEE Intell. Transp. Syst. Conf., 2006, pp.1053-1059.

DOI: 10.1109/itsc.2006.1707361

Google Scholar

[6] M.T. Abbas, M.A. Jibran, M. Afaq, W.-C. Song, An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter, Trans. Emerg. Telecommun. Technol. 31 (5) (2020) e3734, e3734 ett.3734. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/

DOI: 10.1002/ett.3734

Google Scholar

[7] G. Xie, H. Gao, L. Qian, B. Huang, K. Li, J. Wang, Vehicle trajectory prediction by integrating physics- and maneuver-based approaches using interactive multiple models, IEEE Trans. Ind. Electron. 65 (7) (2018) 5999-6008.

DOI: 10.1109/tie.2017.2782236

Google Scholar

[8] K.S. Suhaimi, A. Syauqy, M.S. Subki, B.R. Trilaksono, A.S. Rohman, Y.W. Hadi, H. Supeno, D.B. Kusumawardhana, D.N. Husna, Architecture and decision-making for autonomous tram development, IEEE Access 11 (2023) 71714-71726.

DOI: 10.1109/access.2023.3293659

Google Scholar

[9] J. Zhou, B. Olofsson, E. Frisk, Interaction-aware moving target model predictive control for autonomous vehicles motion planning, in: Proc. Eur. Control Conf. (ECC), 2022, pp.154-161.

DOI: 10.23919/ecc55457.2022.9838002

Google Scholar

[10] J. Zhou, B. Olofsson, E. Frisk, Interaction-aware motion planning for autonomous vehicles with multi-modal obstacle uncertainty predictions, IEEE Trans. Intell. Veh. 9 (1) (2024) 1305-1319.

DOI: 10.1109/tiv.2023.3314709

Google Scholar

[11] E. Mazor, A. Averbuch, Y. Bar-Shalom, J. Dayan, Interacting multiple model methods in target tracking: a survey, IEEE Trans. Aerosp. Electron. Syst. 34 (1) (1998) 103-123.

DOI: 10.1109/7.640267

Google Scholar

[12] A. Carvalho, Y. Gao, S. Lefevre, F. Borrelli, Stochastic predictive control of autonomous vehicles in uncertain environments, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:14171346

Google Scholar

[13] V. Lefkopoulos, M. Menner, A. Domahidi, M.N. Zeilinger, Interaction-aware motion prediction for autonomous driving: A multiple model Kalman filtering scheme, IEEE Robot. Autom. Lett. 6 (1) (2021) 80-87.

DOI: 10.1109/lra.2020.3032079

Google Scholar

[14] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, L. Eckstein, The ind dataset: A drone dataset of naturalistic road user trajectories at German intersections, in: Proc. IEEE Intell. Veh. Symp. (IV), 2020, pp.1929-1934.

DOI: 10.1109/iv47402.2020.9304839

Google Scholar

[15] N. Deo, M.M. Trivedi, Convolutional social pooling for vehicle trajectory prediction, in: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), 2018, pp.1549-15498.

DOI: 10.1109/cvprw.2018.00196

Google Scholar