[1]
S. Lefevre, D. Vasquez, C. Laugier, A survey on motion prediction and risk assessment for intelligent vehicles, ROBOMECH J. 1 (2014) 1-14.
DOI: 10.1186/s40648-014-0001-z
Google Scholar
[2]
S. Ammoun, F. Nashashibi, Real time trajectory prediction for collision risk estimation between vehicles, in: Proc. IEEE 5th Int. Conf. Intell. Comput. Commun. Process., 2009, pp.417-422.
DOI: 10.1109/iccp.2009.5284727
Google Scholar
[3]
T. Kirubarajan, Y. Bar-Shalom, Kalman filter versus IMM estimator: when do we need the latter?, IEEE Trans. Aerosp. Electron. Syst. 39 (4) (2003) 1452-1457.
DOI: 10.1109/taes.2003.1261143
Google Scholar
[4]
X. Chen, J. Gao, X. Han, An algorithm based on interacting multiple models for maneuvering target tracking, in: Proc. IEEE 7th Joint Int. Inf. Technol. Artif. Intell. Conf., 2014, pp.405-408.
DOI: 10.1109/itaic.2014.7065080
Google Scholar
[5]
C. Barrios, H. Himberg, Y. Motai, A. Sadek, Multiple model framework of adaptive extended Kalman filtering for predicting vehicle location, in: Proc. IEEE Intell. Transp. Syst. Conf., 2006, pp.1053-1059.
DOI: 10.1109/itsc.2006.1707361
Google Scholar
[6]
M.T. Abbas, M.A. Jibran, M. Afaq, W.-C. Song, An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter, Trans. Emerg. Telecommun. Technol. 31 (5) (2020) e3734, e3734 ett.3734. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
DOI: 10.1002/ett.3734
Google Scholar
[7]
G. Xie, H. Gao, L. Qian, B. Huang, K. Li, J. Wang, Vehicle trajectory prediction by integrating physics- and maneuver-based approaches using interactive multiple models, IEEE Trans. Ind. Electron. 65 (7) (2018) 5999-6008.
DOI: 10.1109/tie.2017.2782236
Google Scholar
[8]
K.S. Suhaimi, A. Syauqy, M.S. Subki, B.R. Trilaksono, A.S. Rohman, Y.W. Hadi, H. Supeno, D.B. Kusumawardhana, D.N. Husna, Architecture and decision-making for autonomous tram development, IEEE Access 11 (2023) 71714-71726.
DOI: 10.1109/access.2023.3293659
Google Scholar
[9]
J. Zhou, B. Olofsson, E. Frisk, Interaction-aware moving target model predictive control for autonomous vehicles motion planning, in: Proc. Eur. Control Conf. (ECC), 2022, pp.154-161.
DOI: 10.23919/ecc55457.2022.9838002
Google Scholar
[10]
J. Zhou, B. Olofsson, E. Frisk, Interaction-aware motion planning for autonomous vehicles with multi-modal obstacle uncertainty predictions, IEEE Trans. Intell. Veh. 9 (1) (2024) 1305-1319.
DOI: 10.1109/tiv.2023.3314709
Google Scholar
[11]
E. Mazor, A. Averbuch, Y. Bar-Shalom, J. Dayan, Interacting multiple model methods in target tracking: a survey, IEEE Trans. Aerosp. Electron. Syst. 34 (1) (1998) 103-123.
DOI: 10.1109/7.640267
Google Scholar
[12]
A. Carvalho, Y. Gao, S. Lefevre, F. Borrelli, Stochastic predictive control of autonomous vehicles in uncertain environments, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:14171346
Google Scholar
[13]
V. Lefkopoulos, M. Menner, A. Domahidi, M.N. Zeilinger, Interaction-aware motion prediction for autonomous driving: A multiple model Kalman filtering scheme, IEEE Robot. Autom. Lett. 6 (1) (2021) 80-87.
DOI: 10.1109/lra.2020.3032079
Google Scholar
[14]
J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, L. Eckstein, The ind dataset: A drone dataset of naturalistic road user trajectories at German intersections, in: Proc. IEEE Intell. Veh. Symp. (IV), 2020, pp.1929-1934.
DOI: 10.1109/iv47402.2020.9304839
Google Scholar
[15]
N. Deo, M.M. Trivedi, Convolutional social pooling for vehicle trajectory prediction, in: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), 2018, pp.1549-15498.
DOI: 10.1109/cvprw.2018.00196
Google Scholar