Correlation Analysis of Chlorophyll-a and Sea Surface Temperature with Fish Production in Baron Beach Gunungkidul Using Remote Sensing Technology

Article Preview

Abstract:

An exploratory study was conducted using Landsat-8 (L8) and Sentinel-2 (S2) satellite images for the extraction of chlorophyll-a and SST, followed by determining their relationship with fish catch at Baron Beach due to the increasing fish catch in certain months. L8 and S2 can observe chlorophyll-a but not as optimum as low-resolution imagery such as MODIS due to the complex optical characteristics of seawater and their limited band types. Aside from observing the chlorophyll-a, L8 can observe SST value but S2 cannot because it currently has no thermal infrared band. Therefore, both images need to be compared to know their capability of extracting chlorophyll-a and SST. Data processing for chlorophyll-a and SST extraction used Google Earth Engine (GEE) and QGIS. Data extraction preparation involved cloud masking with four scenarios. Chlorophyll-a extraction used Ocean Color (OC) algorithm, while SST extraction at L8 used thermal-infrared band and optical band approach at S2. Differences in extraction results were analyzed using a non-parametric significance test with α = 0.05. The relationship between chlorophyll-a, SST and fish catch was assessed using Catch per Unit Effort (CPUE) values in the Spearman correlation test. The extraction results showed changes in chlorophyll-a and SST values each month in 2022 where both images show an increasing chlorophyll-a within June until October and decreasing within those months. However, the extraction results from both images are significantly different. Aside from the significantly different extraction results, there is a positive correlation between chlorophyll-a and fish catch, but the SST correlation varied between L8 and S2 images. This difference is thought to be caused by image characteristics, cloud masking, and extraction models that are not yet suitable for the Baron coastal area, which is characterized by high sedimentation coastal areas. In this context, correlation analysis showed a relationship between chlorophyll-a concentration and SST with fish production, but direct comparison data at Baron Beach is needed for further analysis.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

496-516

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Kurniawan, "Nelayan Pantai Baron Panen Teri," Harian Jogja, Jan. 3, 2023. [Online]. Available: https://jogjapolitan.harianjogja.com/read/2022/09/15/513/1111871/nelayan-pantai-baron-panen-teri.

Google Scholar

[2] I. K. S. Mustika, "Nelayan Pantai Baron Panen Ikan," Solopos, Jan. 3, 2023. [Online]. Available: https://www.solopos.com/nelayan-pantai-baron-panen-ikan-853475.

Google Scholar

[3] W. Pangaribowo, "Tangkapan Hasil Laut di Pantai Baron Melimpah," TribunJogja, Jan. 3, 2023. [Online]. Available: https://jogja.tribunnews.com/2018/08/21/tangkapan-hasil-laut-di-pantai-baron-melimpah.

DOI: 10.15578/marlin.v1.i2.2020.65-74

Google Scholar

[4] P. R. Pertana, "Beredar video nelayan Gunungkidul panen teri cuma pakai ciduk," Jan. 3, 2023. [Online]. Available: https://www.detik.com/jateng/jogja/d-6295772/beredar-video-nelayan-gunungkidul-panen-teri-cuma-pakai-ciduk.

Google Scholar

[5] P. Sriningrum, "Nelayan Pantai Baron dapat tangkapan ikan melimpah," Akurat.co, Jan. 20, 2023. [Online]. Available: https://akurat.co/nelayan-pantai-baron-dapat-tangkapan-ikan-melimpah.

DOI: 10.58258/jupe.v1i1.63

Google Scholar

[6] A. Syetiawan, "Determination of Potential Fishing Zone Based on Distribution of Chlorophyll-A," Jurnal Ilmiah Geomatika, vol. 21, no. 2, p.131–136, Dec. 2015.

Google Scholar

[7] M. R. Muskananfola, Jumsar, and A. Wirasatriya, "Spatio-temporal distribution of chlorophyll-a concentration, sea surface temperature and wind speed using aqua-modis satellite imagery over the Savu Sea, Indonesia," Remote Sens. Appl., vol. 22, Apr. 2021.

DOI: 10.1016/J.RSASE.2021.100483

Google Scholar

[8] S. Nurdin, A. M. Mustapha, T. Lihan, and M. A. Ghaffar, "Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique," Sains Malays., vol. 44, no. 2, p.225–232, 2015.

DOI: 10.17576/jsm-2015-4402-09

Google Scholar

[9] W. A. L. Ningsih, W. A. Lestariningsih, S. Heltria, and M. H. I. Khaldun, "Analysis of the relationship between chlorophyll-a and sea surface temperature on marine capture fisheries production in Indonesia: 2018," in IOP Conf. Ser.: Earth Environ. Sci., IOP Publishing Ltd, Dec. 2021.

DOI: 10.1088/1755-1315/944/1/012057

Google Scholar

[10] S. Karuppasamy, P. Ashitha, R. Padmanaban, M. Shamsudeen D & J, and M. N. Silva, "A remote sensing approach to monitor potential fishing zone associated with sea surface temperature and chlorophyll concentration," Indian J. Geomarine Sci., vol. 49, no. 06, p.1025–1030, 2020.

Google Scholar

[11] S. Nurdin, M. A. Mustapha, T. Lihan, and M. Zainuddin, "Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia," Fish. Res., vol. 196, p.1–12, Dec. 2017.

DOI: 10.1016/j.fishres.2017.07.029

Google Scholar

[12] Y. Fu, S. Xu, C. Zhang, and Y. Sun, "Spatial downscaling of MODIS Chlorophyll-a using Landsat 8 images for complex coastal water monitoring," Estuar. Coast. Shelf Sci., vol. 209, p.149–159, 2018.

DOI: 10.1016/j.ecss.2018.05.031

Google Scholar

[13] N. Pahlevan et al., "Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3," Remote Sens. Environ., vol. 270, p.112860, 2022.

DOI: 10.1016/j.rse.2021.112860

Google Scholar

[14] J. Snyder, E. Boss, R. Weatherbee, A. C. Thomas, D. Brady, and C. Newell, "Oyster Aquaculture Site Selection Using Landsat 8-Derived Sea Surface Temperature, Turbidity, and Chlorophyll a," Front. Mar. Sci., vol. 4, Jun. 2017.

DOI: 10.3389/fmars.2017.00190

Google Scholar

[15] J. E. O'Reilly and P. J. Werdell, "Chlorophyll algorithms for ocean color sensors - OC4, OC5, OC6," Remote Sens. Environ., vol. 229, p.32–47, Aug. 2019.

DOI: 10.1016/j.rse.2019.04.021

Google Scholar

[16] G. Winarso, Y. Marini, and Y. Marini, "MODIS standard (OC3) chlorophyll-a algorithm evaluation in Indonesian seas," 2014.

DOI: 10.30536/j.ijreses.2014.v11.a2597

Google Scholar

[17] F. Torres-Bejarano, F. Arteaga-Hernández, D. Rodríguez-Ibarra, D. Mejía-Ávila, and L. C. González-Márquez, "Water quality assessment in a wetland complex using Sentinel 2 satellite images," Int. J. Environ. Sci. Technol., vol. 18, no. 8, p.2345–2356, Aug. 2021.

DOI: 10.1007/s13762-020-02988-3

Google Scholar

[18] N. E. Naufalina, J. Marwoto, and B. Rochaddi, "Analisis Sebaran Sedimen Berdasarkan Ukuran Butir di Perairan Pantai Baron, Kabupaten Gunungkidul, Yogyakarta," Indonesian J. Oceanogr. (IJOCE), vol. 4, no. 2, p.61–67, 2022.

DOI: 10.14710/ijoce.v4i2.13934

Google Scholar

[19] A. S. Nugraha, "Dinamika Pantai Di Perairan Pantai Baron, Yogyakarta," Undergraduate Thesis, Universitas Brawijaya, Malang, 2017. [Online]. Available: http://repository.ub.ac.id/id/eprint/135959.

Google Scholar

[20] F. Fauziyah, M. A. Salim, and R. F. Kurniawan, "Distribution pattern of potential fishing zones in the Bangka Strait waters: An application of the remote sensing technique," Egyptian Journal of Remote Sensing and Space Science, vol. 25, no. 1, p.257–265, Feb. 2022.

DOI: 10.1016/J.EJRS.2021.12.003

Google Scholar

[21] G. H. Tilstone, R. M. Garaba, E. S. G. R. R. Souza, and A. K. M. K. Sim, "Performance of Ocean Colour Chlorophyll a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic," Remote Sens. Environ., vol. 260, Jul. 2021.

DOI: 10.1016/j.rse.2021.112444

Google Scholar

[22] B. Wiryawan, Y. K. Santoso, and M. J. R. Purwanto, "Catch per Unit Effort Dynamic of Yellowfin Tuna Related to Sea Surface Temperature and Chlorophyll in Southern Indonesia," Fishes, vol. 5, no. 3, p.28, 2020.

DOI: 10.3390/fishes5030028

Google Scholar

[23] M. Yulianto, M. R. Muskananfola, and A. Rahman, "Sebaran spasio temporal kelimpahan fitoplankton dan klorofil-a di perairan ujung kartini jepara (Spatial and Temporal Distribution Abundance of Phytoplankton and Chlorophyll-a in Ujung Kartini Waters Jepara)," Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, vol. 14, no. 1, p.1–7, Aug. 2018.

DOI: 10.14710/IJFST.14.1.1-7

Google Scholar

[24] D. Anggadewa and S. Suadi, "Studi Perilaku Penangkapan Ikan Nelayan Skala Kecil dan Hasil Tangkapannya di Pantai Baron, Kabupaten Gunungkidul," Undergraduate Thesis, Universitas Gadjah Mada, Yogyakarta, 2022.

DOI: 10.22146/jfs.8869

Google Scholar

[25] S. Sachoemar, "Variability of sea surface chlorophyll-a, temperature and fish catch within indonesian region revealed by satellite data," Marine Research in Indonesia, vol. 37, no. 2, p.75–87, Mar. 2015.

DOI: 10.14203/mri.v37i2.25

Google Scholar

[26] C. Karakizi, K. Karantzalos, M. Vakalopoulou, and G. Antoniou, "Detailed land cover mapping from multitemporal Landsat-8 data of different cloud cover," Remote Sens. (Basel), vol. 10, no. 8, Aug. 2018.

DOI: 10.3390/rs10081214

Google Scholar

[27] V. Nasiri, A. Deljouei, F. Moradi, S. M. M. Sadeghi, and S. A. Borz, "Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods," Remote Sens. (Basel), vol. 14, no. 9, May 2022.

DOI: 10.3390/rs14091977

Google Scholar

[28] L. Gómez-Chova, J. Amorós-López, G. Mateo-García, J. Muñoz-Marí, and G. Camps-Valls, "Cloud masking and removal in remote sensing image time series," J. Appl. Remote Sens., vol. 11, no. 1, p.015005, Jan. 2017.

DOI: 10.1117/1.jrs.11.015005

Google Scholar

[29] P. Filippucci, L. Brocca, S. Bonafoni, C. Saltalippi, W. Wagner, and A. Tarpanelli, "Sentinel-2 high-resolution data for river discharge monitoring," Remote Sens. Environ., vol. 281, Nov. 2022.

DOI: 10.1016/j.rse.2022.113255

Google Scholar

[30] E. A. Karipui and P. M. Amalo, "Buletin Informasi Meteorologi Edisi I-XII Tahun 2022," Alor, 2022.

Google Scholar

[31] A. Rebekić, Z. Lončarić, S. Petrović, and S. Marić, "Pearson's or Spearman's correlation coefficient-which one to use?," Poljoprivreda, vol. 21, no. 2, p.47–54, Dec. 2015.

DOI: 10.18047/poljo.21.2.8

Google Scholar

[32] J. J. Berman, "Understanding Your Data," in Data Simplification, Elsevier, 2016, p.135–187.

DOI: 10.1016/B978-0-12-803781-2.00004-7

Google Scholar

[33] S. Boslaugh and P. A. Watters, Statistics in a Nutshell: A Desktop Quick Reference, 1st ed. Sebastopol, CA, USA: O'Reilly Media, 2012.

Google Scholar

[34] B. Smith et al., "A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks," Frontiers in Remote Sensing, vol. 1, Feb. 2021.

DOI: 10.3389/frsen.2020.623678

Google Scholar

[35] J. Bramich, C. J. S. Bolch, and A. Fischer, "Improved red-edge chlorophyll-a detection for Sentinel 2," Ecol. Indic., vol. 120, p.106876, 2021.

DOI: 10.1016/j.ecolind.2020.106876

Google Scholar

[36] J. Ryu et al., "Revised chlorophyll-a algorithms for satellite ocean color sensors in the East/Japan Sea," Reg. Stud. Mar. Sci., vol. 60, p.102876, 2023.

DOI: 10.1016/j.rsma.2023.102876

Google Scholar

[37] R. Hanintyo and E. Susilo, "Comparison of Chlorophyll-A Measurement Using Multi Spatial Imagery and Numerical Model in Bali Strait," in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Dec. 2016.

DOI: 10.1088/1755-1315/47/1/012010

Google Scholar

[38] S. Poddar, N. Chacko, and D. Swain, "Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors," Front Mar. Sci., vol. 6, Oct. 2019.

DOI: 10.3389/fmars.2019.00598

Google Scholar

[39] G. Buditama, A. Damayanti, and T. Giok Pin, "Identifying Distribution of Chlorophyll-a Concentration Using Landsat 8 OLI on Marine Waters Area of Cirebon," in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Dec. 2017.

DOI: 10.1088/1755-1315/98/1/012040

Google Scholar

[40] C. Nurina Prabiantissa, A. Basuki, and W. Tjatur Sesulihatien, "Observation of Fish Dissemination Pattern on Madura Coastal Using Segmentation of Satellite Images," EMITTER International Journal of Engineering Technology, vol. 7, no. 1, 2019.

DOI: 10.24003/emitter.v7i1.383

Google Scholar

[41] M. Nuzapril, S. Budi Susilo, and J. P. Panjaitan, "Estimasi Produktivitas Primer Perairan Berdasrkan Konsentrasi Klorofil-a yang Diekstrak dari Citra Satelit Landsat-8 di Perairan Kepulauan Karimun Jawa," Jurnal Penginderaan Jauh, vol. 14, no. 1, p.25–36, 2017.

DOI: 10.30536/j.pjpdcd.2017.v14.a2548

Google Scholar

[42] A. Setyawan, "Determination of Potential Fishing Zone Based on Distribution of Chlorophyll-A," Geomatika, vol. 21, no. 2, 2016, [Online]. Available: https://www.researchgate.net/publication/355108709.

Google Scholar

[43] D. Anugrah and S. Suadi, "Analisis Sumber Penghidupan Nelayan Pantai Baron Kabupaten Gunungkidul," Undergraduate Thesis, Universitas Gadjah Mada, Yogyakarta, 2022.

DOI: 10.22146/jfs.8869

Google Scholar

[44] A. Sinaga and H. Saksono, "Kondisi Sosial Ekonomi Nelayan di Pantai Baron Kabupaten Gunungkidul," Undergraduate Thesis, Universitas Gadjah Mada, Yogyakarta, 2023.

Google Scholar

[45] A. Runge and G. Grosse, "Comparing spectral characteristics of Landsat-8 and Sentinel-2 same-day data for arctic-boreal regions," Remote Sens. (Basel), vol. 11, no. 14, 2019.

DOI: 10.3390/rs11141730

Google Scholar

[46] S. Skakun et al., "Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2," Remote Sens. Environ., vol. 274, p.112990, Jun. 2022.

DOI: 10.1016/j.rse.2022.112990

Google Scholar

[47] A. A. Aleskerova, A. A. Kubryakov, and S. V. Stanichny, "A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements," Izvestiya - Atmospheric and Ocean Physics, vol. 52, no. 9, p.1155–1161, Dec. 2016.

DOI: 10.1134/S0001433816090048

Google Scholar

[48] N. Robinson et al., "A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States," Remote Sens. (Basel), vol. 9, no. 8, p.863, Aug. 2017.

DOI: 10.3390/rs9080863

Google Scholar