[1]
D. Kurniawan, "Nelayan Pantai Baron Panen Teri," Harian Jogja, Jan. 3, 2023. [Online]. Available: https://jogjapolitan.harianjogja.com/read/2022/09/15/513/1111871/nelayan-pantai-baron-panen-teri.
Google Scholar
[2]
I. K. S. Mustika, "Nelayan Pantai Baron Panen Ikan," Solopos, Jan. 3, 2023. [Online]. Available: https://www.solopos.com/nelayan-pantai-baron-panen-ikan-853475.
Google Scholar
[3]
W. Pangaribowo, "Tangkapan Hasil Laut di Pantai Baron Melimpah," TribunJogja, Jan. 3, 2023. [Online]. Available: https://jogja.tribunnews.com/2018/08/21/tangkapan-hasil-laut-di-pantai-baron-melimpah.
DOI: 10.15578/marlin.v1.i2.2020.65-74
Google Scholar
[4]
P. R. Pertana, "Beredar video nelayan Gunungkidul panen teri cuma pakai ciduk," Jan. 3, 2023. [Online]. Available: https://www.detik.com/jateng/jogja/d-6295772/beredar-video-nelayan-gunungkidul-panen-teri-cuma-pakai-ciduk.
Google Scholar
[5]
P. Sriningrum, "Nelayan Pantai Baron dapat tangkapan ikan melimpah," Akurat.co, Jan. 20, 2023. [Online]. Available: https://akurat.co/nelayan-pantai-baron-dapat-tangkapan-ikan-melimpah.
DOI: 10.58258/jupe.v1i1.63
Google Scholar
[6]
A. Syetiawan, "Determination of Potential Fishing Zone Based on Distribution of Chlorophyll-A," Jurnal Ilmiah Geomatika, vol. 21, no. 2, p.131–136, Dec. 2015.
Google Scholar
[7]
M. R. Muskananfola, Jumsar, and A. Wirasatriya, "Spatio-temporal distribution of chlorophyll-a concentration, sea surface temperature and wind speed using aqua-modis satellite imagery over the Savu Sea, Indonesia," Remote Sens. Appl., vol. 22, Apr. 2021.
DOI: 10.1016/J.RSASE.2021.100483
Google Scholar
[8]
S. Nurdin, A. M. Mustapha, T. Lihan, and M. A. Ghaffar, "Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique," Sains Malays., vol. 44, no. 2, p.225–232, 2015.
DOI: 10.17576/jsm-2015-4402-09
Google Scholar
[9]
W. A. L. Ningsih, W. A. Lestariningsih, S. Heltria, and M. H. I. Khaldun, "Analysis of the relationship between chlorophyll-a and sea surface temperature on marine capture fisheries production in Indonesia: 2018," in IOP Conf. Ser.: Earth Environ. Sci., IOP Publishing Ltd, Dec. 2021.
DOI: 10.1088/1755-1315/944/1/012057
Google Scholar
[10]
S. Karuppasamy, P. Ashitha, R. Padmanaban, M. Shamsudeen D & J, and M. N. Silva, "A remote sensing approach to monitor potential fishing zone associated with sea surface temperature and chlorophyll concentration," Indian J. Geomarine Sci., vol. 49, no. 06, p.1025–1030, 2020.
Google Scholar
[11]
S. Nurdin, M. A. Mustapha, T. Lihan, and M. Zainuddin, "Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia," Fish. Res., vol. 196, p.1–12, Dec. 2017.
DOI: 10.1016/j.fishres.2017.07.029
Google Scholar
[12]
Y. Fu, S. Xu, C. Zhang, and Y. Sun, "Spatial downscaling of MODIS Chlorophyll-a using Landsat 8 images for complex coastal water monitoring," Estuar. Coast. Shelf Sci., vol. 209, p.149–159, 2018.
DOI: 10.1016/j.ecss.2018.05.031
Google Scholar
[13]
N. Pahlevan et al., "Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3," Remote Sens. Environ., vol. 270, p.112860, 2022.
DOI: 10.1016/j.rse.2021.112860
Google Scholar
[14]
J. Snyder, E. Boss, R. Weatherbee, A. C. Thomas, D. Brady, and C. Newell, "Oyster Aquaculture Site Selection Using Landsat 8-Derived Sea Surface Temperature, Turbidity, and Chlorophyll a," Front. Mar. Sci., vol. 4, Jun. 2017.
DOI: 10.3389/fmars.2017.00190
Google Scholar
[15]
J. E. O'Reilly and P. J. Werdell, "Chlorophyll algorithms for ocean color sensors - OC4, OC5, OC6," Remote Sens. Environ., vol. 229, p.32–47, Aug. 2019.
DOI: 10.1016/j.rse.2019.04.021
Google Scholar
[16]
G. Winarso, Y. Marini, and Y. Marini, "MODIS standard (OC3) chlorophyll-a algorithm evaluation in Indonesian seas," 2014.
DOI: 10.30536/j.ijreses.2014.v11.a2597
Google Scholar
[17]
F. Torres-Bejarano, F. Arteaga-Hernández, D. Rodríguez-Ibarra, D. Mejía-Ávila, and L. C. González-Márquez, "Water quality assessment in a wetland complex using Sentinel 2 satellite images," Int. J. Environ. Sci. Technol., vol. 18, no. 8, p.2345–2356, Aug. 2021.
DOI: 10.1007/s13762-020-02988-3
Google Scholar
[18]
N. E. Naufalina, J. Marwoto, and B. Rochaddi, "Analisis Sebaran Sedimen Berdasarkan Ukuran Butir di Perairan Pantai Baron, Kabupaten Gunungkidul, Yogyakarta," Indonesian J. Oceanogr. (IJOCE), vol. 4, no. 2, p.61–67, 2022.
DOI: 10.14710/ijoce.v4i2.13934
Google Scholar
[19]
A. S. Nugraha, "Dinamika Pantai Di Perairan Pantai Baron, Yogyakarta," Undergraduate Thesis, Universitas Brawijaya, Malang, 2017. [Online]. Available: http://repository.ub.ac.id/id/eprint/135959.
Google Scholar
[20]
F. Fauziyah, M. A. Salim, and R. F. Kurniawan, "Distribution pattern of potential fishing zones in the Bangka Strait waters: An application of the remote sensing technique," Egyptian Journal of Remote Sensing and Space Science, vol. 25, no. 1, p.257–265, Feb. 2022.
DOI: 10.1016/J.EJRS.2021.12.003
Google Scholar
[21]
G. H. Tilstone, R. M. Garaba, E. S. G. R. R. Souza, and A. K. M. K. Sim, "Performance of Ocean Colour Chlorophyll a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic," Remote Sens. Environ., vol. 260, Jul. 2021.
DOI: 10.1016/j.rse.2021.112444
Google Scholar
[22]
B. Wiryawan, Y. K. Santoso, and M. J. R. Purwanto, "Catch per Unit Effort Dynamic of Yellowfin Tuna Related to Sea Surface Temperature and Chlorophyll in Southern Indonesia," Fishes, vol. 5, no. 3, p.28, 2020.
DOI: 10.3390/fishes5030028
Google Scholar
[23]
M. Yulianto, M. R. Muskananfola, and A. Rahman, "Sebaran spasio temporal kelimpahan fitoplankton dan klorofil-a di perairan ujung kartini jepara (Spatial and Temporal Distribution Abundance of Phytoplankton and Chlorophyll-a in Ujung Kartini Waters Jepara)," Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, vol. 14, no. 1, p.1–7, Aug. 2018.
DOI: 10.14710/IJFST.14.1.1-7
Google Scholar
[24]
D. Anggadewa and S. Suadi, "Studi Perilaku Penangkapan Ikan Nelayan Skala Kecil dan Hasil Tangkapannya di Pantai Baron, Kabupaten Gunungkidul," Undergraduate Thesis, Universitas Gadjah Mada, Yogyakarta, 2022.
DOI: 10.22146/jfs.8869
Google Scholar
[25]
S. Sachoemar, "Variability of sea surface chlorophyll-a, temperature and fish catch within indonesian region revealed by satellite data," Marine Research in Indonesia, vol. 37, no. 2, p.75–87, Mar. 2015.
DOI: 10.14203/mri.v37i2.25
Google Scholar
[26]
C. Karakizi, K. Karantzalos, M. Vakalopoulou, and G. Antoniou, "Detailed land cover mapping from multitemporal Landsat-8 data of different cloud cover," Remote Sens. (Basel), vol. 10, no. 8, Aug. 2018.
DOI: 10.3390/rs10081214
Google Scholar
[27]
V. Nasiri, A. Deljouei, F. Moradi, S. M. M. Sadeghi, and S. A. Borz, "Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods," Remote Sens. (Basel), vol. 14, no. 9, May 2022.
DOI: 10.3390/rs14091977
Google Scholar
[28]
L. Gómez-Chova, J. Amorós-López, G. Mateo-García, J. Muñoz-Marí, and G. Camps-Valls, "Cloud masking and removal in remote sensing image time series," J. Appl. Remote Sens., vol. 11, no. 1, p.015005, Jan. 2017.
DOI: 10.1117/1.jrs.11.015005
Google Scholar
[29]
P. Filippucci, L. Brocca, S. Bonafoni, C. Saltalippi, W. Wagner, and A. Tarpanelli, "Sentinel-2 high-resolution data for river discharge monitoring," Remote Sens. Environ., vol. 281, Nov. 2022.
DOI: 10.1016/j.rse.2022.113255
Google Scholar
[30]
E. A. Karipui and P. M. Amalo, "Buletin Informasi Meteorologi Edisi I-XII Tahun 2022," Alor, 2022.
Google Scholar
[31]
A. Rebekić, Z. Lončarić, S. Petrović, and S. Marić, "Pearson's or Spearman's correlation coefficient-which one to use?," Poljoprivreda, vol. 21, no. 2, p.47–54, Dec. 2015.
DOI: 10.18047/poljo.21.2.8
Google Scholar
[32]
J. J. Berman, "Understanding Your Data," in Data Simplification, Elsevier, 2016, p.135–187.
DOI: 10.1016/B978-0-12-803781-2.00004-7
Google Scholar
[33]
S. Boslaugh and P. A. Watters, Statistics in a Nutshell: A Desktop Quick Reference, 1st ed. Sebastopol, CA, USA: O'Reilly Media, 2012.
Google Scholar
[34]
B. Smith et al., "A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks," Frontiers in Remote Sensing, vol. 1, Feb. 2021.
DOI: 10.3389/frsen.2020.623678
Google Scholar
[35]
J. Bramich, C. J. S. Bolch, and A. Fischer, "Improved red-edge chlorophyll-a detection for Sentinel 2," Ecol. Indic., vol. 120, p.106876, 2021.
DOI: 10.1016/j.ecolind.2020.106876
Google Scholar
[36]
J. Ryu et al., "Revised chlorophyll-a algorithms for satellite ocean color sensors in the East/Japan Sea," Reg. Stud. Mar. Sci., vol. 60, p.102876, 2023.
DOI: 10.1016/j.rsma.2023.102876
Google Scholar
[37]
R. Hanintyo and E. Susilo, "Comparison of Chlorophyll-A Measurement Using Multi Spatial Imagery and Numerical Model in Bali Strait," in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Dec. 2016.
DOI: 10.1088/1755-1315/47/1/012010
Google Scholar
[38]
S. Poddar, N. Chacko, and D. Swain, "Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors," Front Mar. Sci., vol. 6, Oct. 2019.
DOI: 10.3389/fmars.2019.00598
Google Scholar
[39]
G. Buditama, A. Damayanti, and T. Giok Pin, "Identifying Distribution of Chlorophyll-a Concentration Using Landsat 8 OLI on Marine Waters Area of Cirebon," in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Dec. 2017.
DOI: 10.1088/1755-1315/98/1/012040
Google Scholar
[40]
C. Nurina Prabiantissa, A. Basuki, and W. Tjatur Sesulihatien, "Observation of Fish Dissemination Pattern on Madura Coastal Using Segmentation of Satellite Images," EMITTER International Journal of Engineering Technology, vol. 7, no. 1, 2019.
DOI: 10.24003/emitter.v7i1.383
Google Scholar
[41]
M. Nuzapril, S. Budi Susilo, and J. P. Panjaitan, "Estimasi Produktivitas Primer Perairan Berdasrkan Konsentrasi Klorofil-a yang Diekstrak dari Citra Satelit Landsat-8 di Perairan Kepulauan Karimun Jawa," Jurnal Penginderaan Jauh, vol. 14, no. 1, p.25–36, 2017.
DOI: 10.30536/j.pjpdcd.2017.v14.a2548
Google Scholar
[42]
A. Setyawan, "Determination of Potential Fishing Zone Based on Distribution of Chlorophyll-A," Geomatika, vol. 21, no. 2, 2016, [Online]. Available: https://www.researchgate.net/publication/355108709.
Google Scholar
[43]
D. Anugrah and S. Suadi, "Analisis Sumber Penghidupan Nelayan Pantai Baron Kabupaten Gunungkidul," Undergraduate Thesis, Universitas Gadjah Mada, Yogyakarta, 2022.
DOI: 10.22146/jfs.8869
Google Scholar
[44]
A. Sinaga and H. Saksono, "Kondisi Sosial Ekonomi Nelayan di Pantai Baron Kabupaten Gunungkidul," Undergraduate Thesis, Universitas Gadjah Mada, Yogyakarta, 2023.
Google Scholar
[45]
A. Runge and G. Grosse, "Comparing spectral characteristics of Landsat-8 and Sentinel-2 same-day data for arctic-boreal regions," Remote Sens. (Basel), vol. 11, no. 14, 2019.
DOI: 10.3390/rs11141730
Google Scholar
[46]
S. Skakun et al., "Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2," Remote Sens. Environ., vol. 274, p.112990, Jun. 2022.
DOI: 10.1016/j.rse.2022.112990
Google Scholar
[47]
A. A. Aleskerova, A. A. Kubryakov, and S. V. Stanichny, "A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements," Izvestiya - Atmospheric and Ocean Physics, vol. 52, no. 9, p.1155–1161, Dec. 2016.
DOI: 10.1134/S0001433816090048
Google Scholar
[48]
N. Robinson et al., "A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States," Remote Sens. (Basel), vol. 9, no. 8, p.863, Aug. 2017.
DOI: 10.3390/rs9080863
Google Scholar