[1]
Badan Pusat Statistik Provinsi Riau. (2022). Luas Kawasan Hutan dan Konservasi Perairan Tahun 2019 – 2021. Riau.
Google Scholar
[2]
Gatziolis, D., Lienard, J. F., Vogs, A., & Strigul, N. S. 3D tree dimensionality assessment using photogrammetry and small unmanned aerial vehicles. PloS one, 10(9), e0137765. (2015)..
DOI: 10.1371/journal.pone.0137765
Google Scholar
[3]
Kwak, D. A., Lee, W. K., Lee, J. H., Biging, G. S., & Gong, P. Detection of individual trees and estimation of tree height using LiDAR data. Forest Research, 12(6), 425-434. (2007).
DOI: 10.1007/s10310-007-0041-9
Google Scholar
[4]
Hansen, M., P. P., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., & Townshend, J. High-resolution global maps of 21st-century Forest Cover Change. Science, 850-853. (2013).
DOI: 10.1126/science.1244693
Google Scholar
[5]
Mohan, M., Silva, C. A., Klauberg, C., Jat, P., Catts, G., Cardil, A., & Dia, M. Individual tree detection from unmanned aerial vehicle (UAV) derived Canopy Height Model in an open canopy mixed conifer forest. Forests, 8(9), 340. (2017).
DOI: 10.3390/f8090340
Google Scholar
[6]
Blom, J. D. Unmanned aerial systems: A historical perspective. Fort Leavenworth, KS: Combat Studies Institute Press, 45. (2010).
Google Scholar
[7]
Wallace, L., Lucieer, A., & Watson, C. S. Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7619-7628. (2014).
DOI: 10.1109/tgrs.2014.2315649
Google Scholar
[8]
Dempewolf, J., Nagol, J., Hein, S., Thiel, C., & Zimmermann, R. Measurement of within-season tree height growth in a mixed forest stand using UAV imagery. Forests, 8(7), 231. (2017).
DOI: 10.3390/f8070231
Google Scholar
[9]
Popescu, S. C., & Wynne, R. H. Seeing the trees in the forest. Photogrammetric Engineering & Remote Sensing, 70(5), 589-604. (2004).
DOI: 10.14358/pers.70.5.589
Google Scholar
[10]
Erikson, M. Segmentation of individual tree crowns in colour aerial photographs using region growing supported by fuzzy rules. Canadian Journal of Forest Research, 33(8), 1557-1563. (2003).
DOI: 10.1139/x03-062
Google Scholar
[11]
Huang, H., Li, X., & Chen, C. Individual tree crown detection and delineation from very-high-resolution UAV images based on bias field and markercontrolled watershed segmentation algorithms. Applied Earth Observations and Remote Sensing, 11(7), 2253-2262. (2018).
DOI: 10.1109/jstars.2018.2830410
Google Scholar
[12]
Li, W., Guo, Q., Jakubowski, M. K., & Kelly, M. A new method for segmenting individual trees from the lidar Point cloud. Photogrammetric Engineering & Remote Sensing, 78(1), 75-84. (2012).
DOI: 10.14358/pers.78.1.75
Google Scholar
[13]
Selim, S., Sonmez, N.K., Coslu, M. and Onur, I., Semi-automatic tree detection from images of unmanned aerial vehicle using object-based image analysis method. The Indian Society of Remote Sensing, 47, 193-200. (2019).
DOI: 10.1007/s12524-018-0900-1
Google Scholar
[14]
trîmbu, V. F., & Strîmbu, B. M. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 30-43. (2015).
DOI: 10.1016/j.isprsjprs.2015.01.018
Google Scholar
[15]
Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A., & White, E. Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sensing, 11(11), 1309. (2019).
DOI: 10.3390/rs11111309
Google Scholar
[16]
Butt, N., Slade, E., Thompson, J., Malhi, Y., & Riutta, T. Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates. Ecological Applications, 23(4), 936-943. (2013).
DOI: 10.1890/11-2059.1
Google Scholar
[17]
Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. Agroforestree Database: a tree reference and selection guide. Version 4. (2009).
Google Scholar
[18]
Ramadhon, S., Tryono, F. Y., Fauzi, I., & Pramudita, G. N. Perbandingan Ketelitian GNSS dengan Metode NRTK, Real-Time PPP dan Post-Processed PPP. JGISE: Journal of Geospatial Information Science and Engineering, 5(2), 63-70.
DOI: 10.22146/jgise.73558
Google Scholar
[19]
Wolf, P. R., Gunadi, Gunawan, T., & Zuharnen. Elemen fotogrametri: dengan interpretasi foto udara dan penginderaan jauh. Gadjah Mada University Press. (1993).
Google Scholar
[20]
Matese, A., Di Gennaro, S. F., & Berton, A. Assessment of a Canopy Height Model (CHM) in a vineyard using UAV-based multispectral imaging. International Journal of Remote Sensing, 38(8-10), 2150-2160. (2017).
DOI: 10.1080/01431161.2016.1226002
Google Scholar
[21]
Mohan, M., Leite, R. V., Broadbent, E. N., Wan Mohd Jaafar, W. S., Srinivasan, S., Bajaj, S., & Cardil, A. Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners. Open Geosciences, 13(1), 1028-1039. (2021).
DOI: 10.1515/geo-2020-0290
Google Scholar
[22]
Belcore, E., Wawrzaszek, A., Wozniak, E., Grasso, N., & Piras, M. Individual tree detection from uav imagery using hölder exponent. Remote Sensing, 12(15), 2407. (2020).
DOI: 10.3390/rs12152407
Google Scholar
[23]
Ramalho de Oliveira, L. F., Lassiter, H. A., Wilkinson, B., Whitley, T., Ifju, P., Logan, S. R., & Martin, T. A. Moving to automated tree inventory: Comparison of uas-derived lidar and photogrammetric data with manual ground estimates. Remote Sensing, 13(1), 72. (2020).
DOI: 10.3390/rs13010072
Google Scholar
[24]
Wulder, M., Niemann, K. O., & Goodenough, D. G. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sensing of environment, 73(1), 103-114. (2000).
DOI: 10.1016/s0034-4257(00)00101-2
Google Scholar
[25]
Yu, K., Hao, Z., Post, C. J., Mikhailova, E. A., Lin, L., Zhao, G., ... & Liu, J. Comparison of classical methods and mask R-CNN for automatic tree detection and mapping using UAV imagery. Remote Sensing, 14(2), 295. (2022).
DOI: 10.3390/rs14020295
Google Scholar
[26]
Dralle, K., & Rudemo, M. number estimation by kernel smoothing of aerial photos. Canadian journal of forest research, 26(7), 1228-1236. (1996).
DOI: 10.1139/x26-137
Google Scholar
[27]
Guerra-Hernández, J., Cosenza, D. N., Rodriguez, L. C. E., Silva, M., Tomé, M., Díaz-Varela, R. A., & González-Ferreiro, E. Comparison of ALS-and UAV (SfM)-derived high-density Point clouds for individual tree detection in Eucalyptus plantations. International Journal of Remote Sensing, 39(15-16), 5211-5235. (2018).
DOI: 10.1080/01431161.2018.1486519
Google Scholar
[28]
Lorenz, M. O. Methods of measuring the concentration of wealth. Publications of the American statistical association, 9(70), 209-219. (1905).
DOI: 10.1080/15225437.1905.10503443
Google Scholar
[29]
McCoy, R. M. Field methods in remote sensing. Guilford Press. (2005).
Google Scholar
[30]
Ding, C. S., Haieh, C. T., Wu, Q., & Pedram, M. Stratified random sampling for power estimation. International Conference on Computer Aided Design, 576-582. (1996).
DOI: 10.1109/iccad.1996.569913
Google Scholar
[31]
Pouliot, D. A., King, D. J., Bell, F. W., & Pitt, D. G. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote sensing of environment, 82(2-3), 322-334. (2002).
DOI: 10.1016/s0034-4257(02)00050-0
Google Scholar
[32]
Dandois, J. P., Olano, M., & Ellis, E. C. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote sensing, 7(10), 13895-13920. (2015).
DOI: 10.3390/rs71013895
Google Scholar
[33]
Gonroudobou, O. B. H., Silvestre, L. H., Diez, Y., Nguyen, H. T., & Caceres, M. L. L. Treetop detection in mountainous forests using UAV terrain awareness function. Computation, 10(6), 90. (2022).
DOI: 10.3390/computation10060090
Google Scholar