Individual Tree Detection for Qualitative Inventory Eucalyptus Pellita Using Unmanned Aerial System (UAS)

Article Preview

Abstract:

The increasing application of remote sensing technologies, particularly the use of Unmanned Aerial Systems (UAS), has significantly advanced forest resource assessment. Advances in remote sensing data acquisition technology, particularly Unmanned Aerial System (UAS), have expanded the knowledge of remote sensing in forestry to produce high-resolution images and affordable 3D data. This study aims to extract and automatically calculate the accuracy of individual tree detection for industrial plantation forests (Eucalyptus pellita) using the local maxima algorithm for Canopy Height Model (CHM) data and to assess silvicultural quality based on tree height. The study was conducted in industrial plantation forest areas located in Tapung District, Kampar Regency, Riau. Seven field plots measuring 4 x 4 trees were manually counted in the field. A total of 99 trees were successfully detected out of 112 trees in the entire plot, resulting in an accuracy of 88% (F-Score 0.89). Overall, the algorithm used missed 17 trees, incorrectly detected 5 trees, and correctly detected 93 trees, resulting in recall and precision values of 0.95 and 0.84, respectively. The COV, Gini, CRR, and PV50 indices yielded values of 0.71, 0.096, 0.12, and 7.57, respectively. Overall, the tree height distribution was relatively uniform with low variation and a moderate concentration of values.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

517-531

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Badan Pusat Statistik Provinsi Riau. (2022). Luas Kawasan Hutan dan Konservasi Perairan Tahun 2019 – 2021. Riau.

Google Scholar

[2] Gatziolis, D., Lienard, J. F., Vogs, A., & Strigul, N. S. 3D tree dimensionality assessment using photogrammetry and small unmanned aerial vehicles. PloS one, 10(9), e0137765. (2015)..

DOI: 10.1371/journal.pone.0137765

Google Scholar

[3] Kwak, D. A., Lee, W. K., Lee, J. H., Biging, G. S., & Gong, P. Detection of individual trees and estimation of tree height using LiDAR data. Forest Research, 12(6), 425-434. (2007).

DOI: 10.1007/s10310-007-0041-9

Google Scholar

[4] Hansen, M., P. P., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., & Townshend, J. High-resolution global maps of 21st-century Forest Cover Change. Science, 850-853. (2013).

DOI: 10.1126/science.1244693

Google Scholar

[5] Mohan, M., Silva, C. A., Klauberg, C., Jat, P., Catts, G., Cardil, A., & Dia, M. Individual tree detection from unmanned aerial vehicle (UAV) derived Canopy Height Model in an open canopy mixed conifer forest. Forests, 8(9), 340. (2017).

DOI: 10.3390/f8090340

Google Scholar

[6] Blom, J. D. Unmanned aerial systems: A historical perspective. Fort Leavenworth, KS: Combat Studies Institute Press, 45. (2010).

Google Scholar

[7] Wallace, L., Lucieer, A., & Watson, C. S. Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7619-7628. (2014).

DOI: 10.1109/tgrs.2014.2315649

Google Scholar

[8] Dempewolf, J., Nagol, J., Hein, S., Thiel, C., & Zimmermann, R. Measurement of within-season tree height growth in a mixed forest stand using UAV imagery. Forests, 8(7), 231. (2017).

DOI: 10.3390/f8070231

Google Scholar

[9] Popescu, S. C., & Wynne, R. H. Seeing the trees in the forest. Photogrammetric Engineering & Remote Sensing, 70(5), 589-604. (2004).

DOI: 10.14358/pers.70.5.589

Google Scholar

[10] Erikson, M. Segmentation of individual tree crowns in colour aerial photographs using region growing supported by fuzzy rules. Canadian Journal of Forest Research, 33(8), 1557-1563. (2003).

DOI: 10.1139/x03-062

Google Scholar

[11] Huang, H., Li, X., & Chen, C. Individual tree crown detection and delineation from very-high-resolution UAV images based on bias field and markercontrolled watershed segmentation algorithms. Applied Earth Observations and Remote Sensing, 11(7), 2253-2262. (2018).

DOI: 10.1109/jstars.2018.2830410

Google Scholar

[12] Li, W., Guo, Q., Jakubowski, M. K., & Kelly, M. A new method for segmenting individual trees from the lidar Point cloud. Photogrammetric Engineering & Remote Sensing, 78(1), 75-84. (2012).

DOI: 10.14358/pers.78.1.75

Google Scholar

[13] Selim, S., Sonmez, N.K., Coslu, M. and Onur, I., Semi-automatic tree detection from images of unmanned aerial vehicle using object-based image analysis method. The Indian Society of Remote Sensing, 47, 193-200. (2019).

DOI: 10.1007/s12524-018-0900-1

Google Scholar

[14] trîmbu, V. F., & Strîmbu, B. M. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 30-43. (2015).

DOI: 10.1016/j.isprsjprs.2015.01.018

Google Scholar

[15] Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A., & White, E. Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sensing, 11(11), 1309. (2019).

DOI: 10.3390/rs11111309

Google Scholar

[16] Butt, N., Slade, E., Thompson, J., Malhi, Y., & Riutta, T. Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates. Ecological Applications, 23(4), 936-943. (2013).

DOI: 10.1890/11-2059.1

Google Scholar

[17] Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. Agroforestree Database: a tree reference and selection guide. Version 4. (2009).

Google Scholar

[18] Ramadhon, S., Tryono, F. Y., Fauzi, I., & Pramudita, G. N. Perbandingan Ketelitian GNSS dengan Metode NRTK, Real-Time PPP dan Post-Processed PPP. JGISE: Journal of Geospatial Information Science and Engineering, 5(2), 63-70.

DOI: 10.22146/jgise.73558

Google Scholar

[19] Wolf, P. R., Gunadi, Gunawan, T., & Zuharnen. Elemen fotogrametri: dengan interpretasi foto udara dan penginderaan jauh. Gadjah Mada University Press. (1993).

Google Scholar

[20] Matese, A., Di Gennaro, S. F., & Berton, A. Assessment of a Canopy Height Model (CHM) in a vineyard using UAV-based multispectral imaging. International Journal of Remote Sensing, 38(8-10), 2150-2160. (2017).

DOI: 10.1080/01431161.2016.1226002

Google Scholar

[21] Mohan, M., Leite, R. V., Broadbent, E. N., Wan Mohd Jaafar, W. S., Srinivasan, S., Bajaj, S., & Cardil, A. Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners. Open Geosciences, 13(1), 1028-1039. (2021).

DOI: 10.1515/geo-2020-0290

Google Scholar

[22] Belcore, E., Wawrzaszek, A., Wozniak, E., Grasso, N., & Piras, M. Individual tree detection from uav imagery using hölder exponent. Remote Sensing, 12(15), 2407. (2020).

DOI: 10.3390/rs12152407

Google Scholar

[23] Ramalho de Oliveira, L. F., Lassiter, H. A., Wilkinson, B., Whitley, T., Ifju, P., Logan, S. R., & Martin, T. A. Moving to automated tree inventory: Comparison of uas-derived lidar and photogrammetric data with manual ground estimates. Remote Sensing, 13(1), 72. (2020).

DOI: 10.3390/rs13010072

Google Scholar

[24] Wulder, M., Niemann, K. O., & Goodenough, D. G. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sensing of environment, 73(1), 103-114. (2000).

DOI: 10.1016/s0034-4257(00)00101-2

Google Scholar

[25] Yu, K., Hao, Z., Post, C. J., Mikhailova, E. A., Lin, L., Zhao, G., ... & Liu, J. Comparison of classical methods and mask R-CNN for automatic tree detection and mapping using UAV imagery. Remote Sensing, 14(2), 295. (2022).

DOI: 10.3390/rs14020295

Google Scholar

[26] Dralle, K., & Rudemo, M. number estimation by kernel smoothing of aerial photos. Canadian journal of forest research, 26(7), 1228-1236. (1996).

DOI: 10.1139/x26-137

Google Scholar

[27] Guerra-Hernández, J., Cosenza, D. N., Rodriguez, L. C. E., Silva, M., Tomé, M., Díaz-Varela, R. A., & González-Ferreiro, E. Comparison of ALS-and UAV (SfM)-derived high-density Point clouds for individual tree detection in Eucalyptus plantations. International Journal of Remote Sensing, 39(15-16), 5211-5235. (2018).

DOI: 10.1080/01431161.2018.1486519

Google Scholar

[28] Lorenz, M. O. Methods of measuring the concentration of wealth. Publications of the American statistical association, 9(70), 209-219. (1905).

DOI: 10.1080/15225437.1905.10503443

Google Scholar

[29] McCoy, R. M. Field methods in remote sensing. Guilford Press. (2005).

Google Scholar

[30] Ding, C. S., Haieh, C. T., Wu, Q., & Pedram, M. Stratified random sampling for power estimation. International Conference on Computer Aided Design, 576-582. (1996).

DOI: 10.1109/iccad.1996.569913

Google Scholar

[31] Pouliot, D. A., King, D. J., Bell, F. W., & Pitt, D. G. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote sensing of environment, 82(2-3), 322-334. (2002).

DOI: 10.1016/s0034-4257(02)00050-0

Google Scholar

[32] Dandois, J. P., Olano, M., & Ellis, E. C. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote sensing, 7(10), 13895-13920. (2015).

DOI: 10.3390/rs71013895

Google Scholar

[33] Gonroudobou, O. B. H., Silvestre, L. H., Diez, Y., Nguyen, H. T., & Caceres, M. L. L. Treetop detection in mountainous forests using UAV terrain awareness function. Computation, 10(6), 90. (2022).

DOI: 10.3390/computation10060090

Google Scholar