Optimization of a Nanoampere-to-Millivolt Amplifier for Amperometric Electrical Biosensors

Article Preview

Abstract:

Point-of-care diagnostic systems face challenges because they are mainly designed for laboratory settings. Biosensor detection plays a crucial role in modern healthcare by enabling real-time monitoring of biomolecules, facilitating rapid diagnosis, and allowing for timely interventions. These sensors are vital for various applications, including glucose monitoring, infectious disease detection, and environmental analysis. The reader-disposable approach is gaining popularity in both research and commercial point-of-care devices. Open-source hardware projects based on microcontrollers are increasingly favored for biosensing applications due to their cost-effectiveness and flexibility. However, biosensors that operate in the nanoampere range still encounter issues with power supply, signal amplification, and result display. This research focuses on designing and developing a portable amperometric device for low-current detection. The system includes a multi-stage circuit featuring a voltage converter, voltage amplifier, microcontroller, display, and power supply. A shunt resistor converts input current to voltage, with an op-amp MAX4238 IC amplifying the voltage at a gain of 100. A NodeMCU microcontroller reads the output voltage and displays it on an LCD. For simulation, LTspice, Proteus 8 Pro, and Arduino software are used. Experimental testing involves using a voltage source and variable resistor to verify accuracy, comparing theoretical, simulation, and experimental results. The system demonstrated a sensitivity down to approximately 45 nA, with output linearity maintained across the tested range. The average error margin between experimental and theoretical values remained within ±2.5%. This advancement improves sensitivity in detecting low currents, enhancing point-of-care biosensing applications.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 29)

Pages:

9-15

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Chen et al., "Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics," Biosens. Bioelectron., vol. 86, p.770–776, 2016.

DOI: 10.1016/j.bios.2016.07.071

Google Scholar

[2] N. Shoaie, M. Forouzandeh, and K. Omidfar, "Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles," Microchim. Acta, vol. 185, no. 4, p.1–9, 2018.

DOI: 10.1007/s00604-018-2749-y

Google Scholar

[3] B. Thakur et al., "Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device," Biosens. Bioelectron., vol. 110, p.16–22, 2018.

DOI: 10.1016/j.bios.2018.03.014

Google Scholar

[4] N. Khunrattanaporn, P. Rijiravanich, M. Somasundrum, and W. Surareungchai, "Highly sensitive electrochemical detection of genomic DNA based on stem loop probes structured for magnetic collection and measurement via metalised hollow polyelectrolyte shells," Biosens. Bioelectron., vol. 73, p.181–187, 2015.

DOI: 10.1016/j.bios.2015.05.068

Google Scholar

[5] W. Wu, S. Zhao, Y. Mao, Z. Fang, X. Lu, and L. Zeng, "A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification," Anal. Chim. Acta, vol. 861, p.62–68, 2015.

DOI: 10.1016/j.aca.2014.12.041

Google Scholar

[6] M. Xu, R. Wang, and Y. Li, "Electrochemical biosensors for rapid detection of Escherichia coli O157:H7," Talanta, vol. 162, p.511–522, 2017.

DOI: 10.1016/j.talanta.2016.10.050

Google Scholar

[7] J. M. Ismail et al., "Synthesis of Zinc Oxide Nanoparticles via Cellar Spider Extract for Enhanced Functional Properties in Antimicrobial Activities," Int. J. Nanoelectron. Mater., vol. 17, no. June Special issue, p.203–210, 2024.

DOI: 10.58915/ijneam.v17iJune.856

Google Scholar

[8] M. N. A. Uda et al., "Analysis on Silica and Graphene Nanomaterials Obtained From Rice Straw for Antimicrobial Potential," Int. J. Nanoelectron. Mater., vol. 17, no. Special issue, p.221–228, 2024.

DOI: 10.58915/ijneam.v17iJune.861

Google Scholar

[9] M. N. Afnan Uda et al., "Aluminium Interdigitated Electrode with 5.0 µm Gap for Electrolytic Scooting," Int. J. Nanoelectron. Mater., vol. 17, no. Special issue, p.237–243, 2024.

DOI: 10.58915/ijneam.v17iJune.863

Google Scholar

[10] M. Isa et al., "Arthropods-mediated Green Synthesis of Zinc Oxide Nanoparticles using Cellar Spider Extract: A Biocompatible Remediation for Environmental Approach," Int. J. Nanoelectron. Mater., vol. 17, no. Special Issue, p.211–219, 2024.

DOI: 10.58915/ijneam.v17iJune.860

Google Scholar

[11] L. O. Agbolade et al., "Revisiting the Optoelectronic Properties of Graphene: A DFT Approach," Int. J. Nanoelectron. Mater., vol. 17, no. 1, p.76–88, 2024.

DOI: 10.58915/ijneam.v17i1.476

Google Scholar

[12] U. Hashim et al., "Advancing COVID-19 Detection: High-Performance RNA Biosensing via Electrical Interactions," Int. J. Nanoelectron. Mater., vol. 17, no. June Special issue, p.229–235, 2024.

DOI: 10.58915/ijneam.v17iJune.862

Google Scholar

[13] Q. Guo et al., "DNA-based hybridization chain reaction and biotin–streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA," Biosens. Bioelectron., vol. 86, p.990–995, 2016.

DOI: 10.1016/j.bios.2016.07.049

Google Scholar

[14] B. Pang et al., "Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection," Anal. Biochem., vol. 542, p.58–62, 2018.

DOI: 10.1016/j.ab.2017.11.010

Google Scholar

[15] C. Song, J. Li, J. Liu, and Q. Liu, "Simple sensitive rapid detection of Escherichia coli O157:H7 in food samples by label-free immunofluorescence strip sensor," Talanta, vol. 156–157, p.42–47, 2016.

DOI: 10.1016/j.talanta.2016.04.054

Google Scholar

[16] M. N. Afnan Uda, A. B. Jambek, U. Hashim, and M. N. A. Uda, "Electrical DNA Biosensor Using Aluminium Interdigitated Electrode for Salmonella Detection," IOP Conf. Ser. Mater. Sci. Eng., vol. 743, no. 1, 2020.

DOI: 10.1088/1757-899X/743/1/012022

Google Scholar

[17] M. N. A. Uda et al., "Harumanis Mango: Perspectives in Disease Management and Advancement using Interdigitated Electrodes (IDE) Nano-Biosensor," IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, 2020.

DOI: 10.1088/1757-899X/864/1/012180

Google Scholar

[18] M. N. A. Uda, U. Hashim, S. C. B. Gopinath, M. N. A. Uda, N. A. Parmin, and A. M. Isa, "Label-free aptamer based biosensor for heavy metal detection," AIP Conf. Proc., vol. 2291, no. November, 2020.

DOI: 10.1063/5.0022834

Google Scholar

[19] R. D. A. A. Rajapaksha, N. A. N. Azman, M. N. A. Uda, U. Hashim, S. C. B. Gopinath, and C. A. N. Fernando, "Multichannel PDMS microfluidic based nano-biolab-on-a-chip for medical diagnostics," AIP Conf. Proc., vol. 2045, no. March 2016, 2018.

DOI: 10.1063/1.5080833

Google Scholar

[20] M. N. Afnan Uda et al., "Nano-micro-mili Current to Mili Voltage Amplifier for Amperometric Electrical Biosensors," IOP Conf. Ser. Mater. Sci. Eng., vol. 743, no. 1, 2020.

DOI: 10.1088/1757-899X/743/1/012021

Google Scholar

[21] H. M. Azwatul et al., "Plant-based green synthesis of silver nanoparticle via chemical bonding analysis," Mater. Today Proc., no. January, 2023.

DOI: 10.1016/j.matpr.2023.01.005

Google Scholar

[22] P. V Savaliya, S. B. Somani, and V. V Shete, "A Bluetooth Tele Health, Household Security and Industry Safety Realization by Android Smartphone," Int. J. Adv. Res. Comput. Commun. Eng., vol. 4, no. 6, p.382–385, 2015.

Google Scholar

[23] R. Bhattacharya, N. Bandyopadhyay, and S. Kalaivani, "Real time Android app based respiration rate monitor," Proc. Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, vol. 2017-Janua, p.709–712, 2017.

DOI: 10.1109/ICECA.2017.8203633

Google Scholar

[24] G. Scandurra, G. Giusi, and C. Ciofi, " Ultra-low noise, single JFET voltage pre-amplifier for low frequency noise measurements," p.2–5.

DOI: 10.3390/electronics8101197

Google Scholar

[25] R. H. Rakin, A. Siam, M. R. Hossain, and H. U. Zaman, "A low-cost and portable electrocardiogram (ECG) machine for preventing diagnosis," 1st Int. Conf. Robot. Electr. Signal Process. Tech. ICREST 2019, p.48–53, 2019.

DOI: 10.1109/ICREST.2019.8644425

Google Scholar

[26] M. Nur et al., "Conductometric immunosensor for specific Escherichia coli O157 : H7 detection on chemically funcationalizaed interdigitated aptasensor," Heliyon, vol. 10, no. 5, p. e26988, 2024.

DOI: 10.1016/j.heliyon.2024.e26988

Google Scholar

[27] M. N. Afnan Uda, A. B. Jambek, U. Hashim, M. N. A. Uda, and M. A. F. Bahrin, "Aluminium Interdigitated Electrode Based Biosensor for Specific ssDNA Target Listeria Detection," IOP Conf. Ser. Mater. Sci. Eng., vol. 743, no. 1, 2020.

DOI: 10.1088/1757-899X/743/1/012032

Google Scholar

[28] M. N. Afnan Uda, A. B. Jambek, U. Hashim, and M. N. A. Uda, "Development of Voltage Amplifier Electronic Reader for Multiplex Detection of Two Electrode Electrical Biosensors," IOP Conf. Ser. Mater. Sci. Eng., vol. 743, no. 1, 2020.

DOI: 10.1088/1757-899X/743/1/012019

Google Scholar