Review of Deep Learning Using Convolutional Neural Network Model

Article Preview

Abstract:

Machine Learning can be used to process a lot of data and learn patterns from that data to predict the future. One of the most widely used parts of machine learning is Deep Learning. The Deep Learning method that currently provides the most significant results in image recognition is Convolutional Neural Network (CNN). Convolutional Neural Network (CNN) is one of the deep learning algorithms used for computer vision use cases such as image or video classification and detecting objects within images or even image areas. Some research related to the CNN model states that this model has a very good accuracy of 92% but with a fairly small amount of data and the use of epochs, namely 100, resulting in a higher validation error value than the error value in the training process, so that over fitting will occur. Based on several problems in the related research literature, this article aims to identify the weaknesses and shortcomings of Deep Learning algorithms using CNN models that refer to the state of the art, so that they can be used as a reference for further research. The state of the art related to research in the last five years, the Deep Learning algorithm using the CNN model found that (1) The number of epochs can affect the accuracy of the CNN model, (2) 2. The application of architecture can affect the accuracy of the CNN model, (3) the application of the type of layer can affect the accuracy of the CNN model. Based on several problems in the research literature related to the identification of weaknesses and shortcomings of Deep Learning using the CNN model which refers to Table 1. State of the Art summary of literature review research for the last five years, it can be concluded that to increase the accuracy of the CNN model, it is necessary to increase the number of epochs, apply the right architecture according to the problems in the research conducted, and use the type of layer. The hypothesis of this article can be used as a reference for further research related to Deep Learning using the CNN model.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 3)

Pages:

49-55

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fathurohman, "Machine Learning Untuk Pendidikan: Mengapa Dan Bagaimana," J. Inform. Dan Teknol. Komput., vol. 1, no. 3, p.57–62, 2021.

Google Scholar

[2] F. P. Rachman, "Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing," J. Teknol. dan Manaj. Inform., vol. 7, no. 2, p.113–121, Dec. 2021.

DOI: 10.26905/jtmi.v7i2.6506

Google Scholar

[3] P. A. Nugroho, I. Fenriana, and R. Arijanto, "Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia," Algor, vol. 2, no. 1, p.12–21, 2020.

Google Scholar

[4] A. Rahim, K. Kusrini, and E. T. Luthfi, "Convolutional Neural Network untuk Kalasifikasi Penggunaan Masker," Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 2, p.109, 2020.

DOI: 10.35585/inspir.v10i2.2569

Google Scholar

[5] F. Paraijun, R. N. Aziza, and D. Kuswardani, "Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah," Kilat, vol. 11, no. 1, p.1–9, 2022.

DOI: 10.33322/kilat.v10i2.1458

Google Scholar

[6] F. M. Qotrunnada and P. H. Utomo, "Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker," Prisma, vol. 5, p.799–807, 2022.

Google Scholar

[7] R. A. Saputra, S. Wasiyanti, A. Supriyatna, and D. F. Saefudin, "Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi," Swabumi, vol. 9, no. 2, p.184–188, 2021.

DOI: 10.31294/swabumi.v9i2.11678

Google Scholar

[8] P. L. Parameswari and Prihandoko, "Penggunaan Convolutional Neural Network Untuk Analisis Sentimen Opini Lingkungan Hidup Kota Depok Di Twitter," J. Ilm. Teknol. dan Rekayasa, vol. 27, no. 1, p.29–42, 2022.

DOI: 10.35760/tr.2022.v27i1.4671

Google Scholar

[9] J. Kecerdasan Buatan et al., "Vol. X No.X Tahun 20XX Implementasi Algoritma Convolutional Neural Networks (CNN) Untuk Klasifikasi Batik," vol. X, no. X, p.40–47, 2021, [Online]. Available: https://ejournal.unuja.ac.id/index.php/core

DOI: 10.33650/coreai.v2i2.3365

Google Scholar

[10] A. Pribadi and Ade Kurniawan, "Deteksi Penyakit Sawit Menggunakan Metode Deep Learning," J. Sains dan Ilmu Terap., vol. 5, no. 2, p.72–76, Dec. 2022.

DOI: 10.59061/jsit.v5i2.86

Google Scholar

[11] K. Kartarina, L. Z. A. Mardedi, M. Madani, M. Jihad, and R. A. Riberu, "Deep Learning Identifikasi Tanaman Obat Menggunakan Konsep Siamese Neural Network," JTIM J. Teknol. Inf. dan Multimed., vol. 2, no. 4, p.223–228, Feb. 2021.

DOI: 10.35746/jtim.v2i4.114

Google Scholar

[12] I. Denata, T. Rismawan, and I. Ruslianto, "Implementation of Deep Learning for Classification Type of Orange Using The Method Convolutional Neural Network," Telematika, vol. 18, no. 3, p.297, Oct. 2021.

DOI: 10.31315/telematika.v18i3.5541

Google Scholar

[13] K. Kaluku, "State of The Art Dalam Pngembangan Ilmu Pengetahuan Kesehatan," Glob. Heal. Sci., vol. 3, no. 4, p.394–399, 2018.

Google Scholar

[14] A. Perdananto, "Penerapan deep learning pada Aplikasi prediksi penyakit Pneumonia berbasis Convolutional Neural networks," J. Informatics Commun. Technol., vol. 1, no. 2, p.1–10, 2019.

DOI: 10.52661/j_ict.v1i2.34

Google Scholar

[15] E. Yuliani, A. N. Aini, and C. U. Khasanah, "Perbandingan Jumlah Epoch Dan Steps Per Epoch Pada Convolutional Neural Network Untuk Meningkatkan Akurasi Dalam Klasifikasi Gambar," J. Inf. J. Penelit. dan Pengabdi. Masy., vol. 5, no. 3, p.23–27, Jan. 2019.

DOI: 10.46808/informa.v5i3.140

Google Scholar

[16] S. Fauzi, P. Eosina, and G. F. Laxmi, "Implementasi Convolutional Neural Network Untuk Identifikasi Ikan Air Tawar," Semin. Nas. Teknol. Inf., vol. 2, p.163–167, 2019, [Online]. Available: http://prosiding.uika-bogor.ac.id/index.php/semnati/article/view/286

DOI: 10.32832/kreatif.v6i2.2185

Google Scholar

[17] Dwi Fitriana Sari and D. Swanjaya, "Implementasi Convolutional Neural Network Untuk Identifikasi Penyakit Daun Gambas," Semin. Nas. Inov. Teknol., vol. 04, no. 03, p.137–142, 2020.

Google Scholar

[18] M. Resa, A. Yudianto, and H. Al Fatta, "Analisis Pengaruh Tingkat Akurasi Klasifikasi Citra Wayang dengan Algoritma Convolutional Neural Network," J. Teknol. Inf., vol. 4, no. 2, p.182–190, 2020.

DOI: 10.36294/jurti.v4i2.1319

Google Scholar

[19] A. Ramdan, V. Zilvan, E. Suryawati, H. F. Pardede, and V. P. Rahadi, "Tea clone classification using deep CNN with residual and densely connections," J. Teknol. dan Sist. Komput., vol. 8, no. 4, p.289–296, Oct. 2020.

DOI: 10.14710/jtsiskom.2020.13768

Google Scholar

[20] R. Fayyadhila, A. Junaidi, and N. A. Prasetyo, "Implementasi Deep Learning Untuk Klasifikasi Citra Undertone Menggunakan Algoritma Convolutional Neural Network," J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 2, p.52–57, Aug. 2021.

DOI: 10.20895/dinda.v1i2.366

Google Scholar

[21] G. W. Intyanto, "Klasifikasi Citra Bunga dengan Menggunakan Deep Learning: CNN (Convolution Neural Network)," J. Arus Elektro Indones., vol. 7, no. 3, p.80, Dec. 2021.

DOI: 10.19184/jaei.v7i3.28141

Google Scholar

[22] Heriyanto, "Studi Deep Learning menggunakan metode CNN dengan optimasi pada Convolutional Layer Prosiding Seminar Nasional Teknik Elektro Volume 7 Tahun 2022," Pros. Semin. Nas. Tek. Elektro, vol. 7, no. 1, p.2–5, 2022, [Online]. Available: https://prosiding-old.pnj.ac.id/index.php/snte/article/view/4329/pdf

DOI: 10.30743/semnastek

Google Scholar

[23] D. S. Wita and D. Y. Liliana, "Klasifikasi Identitas Dengan Citra Telapak Tangan Menggunakan Convolutional Neural Network (CNN)," J. Rekayasa Teknol. Inf., vol. 6, no. 1, p.1, Jul. 2022.

DOI: 10.30872/jurti.v6i1.7100

Google Scholar

[24] D. Marcella, Y. Yohannes, and S. Devella, "Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Dengan Arsitektur VGG-19," J. Algoritm., vol. 3, no. 1, p.60–70, Oct. 2022.

DOI: 10.35957/algoritme.v3i1.3331

Google Scholar

[25] A. B. Prakosa, Hendry, and R. Tanone, "Implementasi Model Deep Learning Convolutional Neural Network ( Cnn ) Pada Citra Penyakit Daun Jagung," J. Pendidik. Teknol. Inf., vol. 6, no. 1, p.107–116, 2023.

Google Scholar

[26] Y. N. Yenusi, Suryasatriya Trihandaru, and A. Setiawan, "Comparison of Convolutional Neural Network (CNN) Models in Face Classification of Papuan and Other Ethnicities," JST (Jurnal Sains dan Teknol., vol. 12, no. 1, p.261–268, Mar. 2023.

DOI: 10.23887/jstundiksha.v12i1.46861

Google Scholar

[27] R. A. Tilasefana and R. E. Putra, "Penerapan Metode Deep Learning Menggunakan Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca," J. Informatics Comput. Sci., vol. 05, no. 1, p.48–57, 2023.

Google Scholar

[28] Faiz Nashrullah, Suryo Adhi Wibowo, and Gelar Budiman, "The Investigation of Epoch Parameters in ResNet-50 Architecture for Pornographic Classification," J. Comput. Electron. Telecommun., vol. 1, no. 1, p.1–8, Jul. 2020.

DOI: 10.52435/complete.v1i1.51

Google Scholar

[29] A. Peryanto, A. Yudhana, and R. Umar, "Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning BerbPeryanto, A., Yudhana, A., & Umar, R. (2020). Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network. Format : Jurnal Ilmiah Teknik I," Format J. Ilm. Tek. Inform., vol. 8, no. 2, p.138, 2020.

DOI: 10.22441/format.2019.v8.i2.007

Google Scholar