[1]
J.A. Strong, E. Andonegi, K.C. Bizsel, R. Danovaro, M. Elliott, A. Franco, E. Garces, Little, S, K. Mazik, S. Moncheva, N. Papadopoulou, J. Patrício, A.M. Queirós, C. Smith, K. Stefanova, O. Solaun, Marine biodiversity and ecosystem function relation-ships: the potential for practical monitoring applications. Estuar. Coast. Shelf Sci.161 (2015), 46-64.
DOI: 10.1016/j.ecss.2015.04.008
Google Scholar
[2]
N. Arina, M. Rozaimi, N.F.A. Zainee, High localised diversity of Halimeda (Chlorophyta: Bryopsidales) in a tropical marine park from Pahang, Malaysia. Reg. Stud. Mar. Sci. 31, 100773. http://dx.doi.org/10.1016/j.rsma. 2019.100773.
DOI: 10.1016/j.rsma.2019.100773
Google Scholar
[3]
B. Benhniya, F. Lakhdar, N. Rezzoum, S. Etahiri, GC/MS analysis and antibacterial potential of macroalgae extracts harvested on Moroccan Atlantic coast, Egypt. J. Chem. 65 (2022),171–179, https://doi.org/10.21608/ EJCHEM.2022.117053.5301.
DOI: 10.21608/ejchem.2022.117053.5301
Google Scholar
[4]
S. Etahiri, A. El Kouri, V. Bultel-Ponce, M. Guyot, O. Assobhei, Antibacterial bromophenol from the marine red algae Pterosiphonia complanata. Nat Prod Commun. 2(2007), 749-752.
DOI: 10.1177/1934578x0700200708
Google Scholar
[5]
M.S.K. Khan, M.E. Hoq, M.A. Haque, M.M. Islam, M.M. Hoque, Nutritional evaluation of some seaweeds from the Bay of Bengal in contrast to inland fishes of Bangladesh. IOSRJ Environ Sci Toxicol Food Technol10 (2016), 59-65.
Google Scholar
[6]
A. Duran, L. Collado-Vides, L. Palma, D.E. Burkepile, Interactive effects of herbivory and substrate orientation on algal community dynamics on a coral reef. Mar Biol 165 (2018),1-9
DOI: 10.1007/s00227-018-3411-2
Google Scholar
[7]
G. Bonanno, M. Orlando-Bonaca, Chemical elements in Mediterranean macroalgae: a review. Ecotoxicol Environ Saf 148 (2018), 44-71
DOI: 10.1016/j.ecoenv.2017.10.013
Google Scholar
[8]
D. Oryza, S. Mahanal, M.S Sari, Identifikasi Rhodophyta sebagai bahan ajar di perguruan tinggi [Identification of Rhodophyta as teaching materials in higher education]. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 2(3) (2017), 309–314. https://doi. org/10.17977/jptpp. v2i3.8582.
DOI: 10.17977/jptpp.v4i8.12685
Google Scholar
[9]
Li, J.Y., Liu, Y.C., Liu, Y., Wang, Q.H., Gao, X., Gong, Q.L. (2019). Effects of temperature and salinity on the growth and biochemical composition of the brown alga Sargassum fusiforme (Fucales, Phaeophyceae). J. Appl. Phycol. 31, 3061–3068.
DOI: 10.1007/s10811-019-01795-9
Google Scholar
[10]
R.T. Paine, Food web complexity and species diversity. Am. Nat. 100 (1966), 65–75.
Google Scholar
[11]
E.P. Dahlhoff, Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annu. Rev. Physiol. 66 (2004), 183–207.
DOI: 10.1146/annurev.physiol.66.032102.114509
Google Scholar
[12]
J.J. Cruz-Motta, P. Miloslavich, G. Palomo, K. Iken, B. Konar, G. Pohle, T. Trott, L. Benedetti-Cecchi, C. Herrera, A. Hernández, A. Sardi, A. Bueno, J. Castillo, E. Klein, E. Guerras-Castro, J. Gobin, D.I. Gómez, R. Riosmena-Rodríguez, A. Mead, G. Bigatti, A. Knowlton, Y. Shirayama, Patterns of spatial variation of assemblages associated with intertidal rocky shores: a global perspective. PLoS One 5 (2010), e14354.
DOI: 10.1371/journal.pone.0014354
Google Scholar
[13]
M.P. Raffo, V. Lo Russo, E. Schwindt, Introduced and native species on rocky shore macroalgal assemblages: zonation patterns, composition and diversity. Aquat. Bot. 112 (2014), 57–65.
DOI: 10.1016/j.aquabot.2013.07.011
Google Scholar
[14]
Byrnes, J.E., Reynolds, P.L., Stachowicz, J.J. (2007). Invasions and extinctions reshape coastal marine food webs. PLoS One 2(3), e295. http://dx.doi.org/.
DOI: 10.1371/journal.pone.0000295
Google Scholar
[15]
Zainee, N.F.A., Rozaimi, M. (2020). Influence of monsoonal storm disturbance on the diversity of intertidal macroalgae along the eastern coast of Johor (Malaysia). Reg. Stud. Mar. Sci. 40, 101481.
DOI: 10.1016/j.rsma.2020.101481
Google Scholar
[16]
Bachot, X., Riera, R. (2025). How the invasive algae Rugulopteryx okamurae affect coastal biodiversity? Insights from coastal fish communities of Gran Canaria (NE Atlantic Ocean). J. Sea Res., 102568.
DOI: 10.1016/j.seares.2025.102568
Google Scholar
[17]
Kulshreshtha, G., Hincke, M.T., Prithiviraj, B., Critchley, A. (2020). A review of the varied uses of macroalgae as dietary supplements in selected poultry with special reference to laying hen and broiler chickens. J. Mar. Sci. Eng. 8.
DOI: 10.3390/jmse8070536
Google Scholar
[18]
Jelic Mrcelic, G., Krstulović Šifner, S., Nerlović, V. (2024). A comparison between the production of edible macroalgae worldwide and in the Mediterranean Sea. Oceans 5, 442–465. https://doi.org/10.3390/ oceans5030026
DOI: 10.3390/oceans5030026
Google Scholar
[19]
B. Benhniya, F. Lakhdar, S. Al Qoh, H. Zidane, S. Etahiri, N. Rezzoum, New checklist of marine macroalgae in the coast of El Jadida (Morocco): temporal variation of physico-chemical parameters of water, Ecol. Front. (avr. 2024) 760–768.
DOI: 10.1016/j.ecofro.2024.02.008
Google Scholar
[20]
E. Ramos, A. Puente, J.A. Juanes, An ecological classification of rocky shores at a regional scale: a predictive tool for management of conservation values, Mar. Ecol. 37 (2016) 311–328.
DOI: 10.1111/maec.12280
Google Scholar
[21]
P. Gayral, Algues de la côte atlantique marocaine, Casablanca, Morocco, Edita, 1958, p.523.
Google Scholar
[22]
FAO, Fishery Statistical Collections, Global Aquaculture Production, 2018. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en.
DOI: 10.4060/cb1213t
Google Scholar
[23]
N.J. Turland, J.H. Wiersema, F.R. Barrie, W. Greuter, D.L. Hawksworth, P.S. Herendeen, S. Knapp, W.H. Kusber, D.Z. Li, K. Marhold, T.W. May, J. McNeill, A.M. Monro, J. Prado, M.J. Price, G.F. Smith, International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code), Regnum Vegetabile 159, Koeltz Botanical Books, Glashütten, 2018.
DOI: 10.12705/code.2018
Google Scholar
[24]
M.D. Guiry, G.M. Guiry, Algaebase. World-wide electronic publication, National University of Ireland, Galway, 2020. http://www.algaebase.org.
Google Scholar
[25]
C.E. Shannon, W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, 1949.
Google Scholar
[26]
L.W. Winkler, Die bestimmung des in Wasser gelösten sauerstoffen, Ber. Dtsch. Chem. Ges. 21 (1988) 2843–2855.
DOI: 10.1002/cber.188802102122
Google Scholar
[27]
AFNOR, Qualité de l'Eau : Analyse Biochimique et Biologiques, Analyse Microbiologique, Textes Réglementaires, 6e Édition, Tome 4, Paris, 2001, p.695.
Google Scholar
[28]
R. Santos, R.A. Melo, Global shortage of technical agars: Back to basics (resource management), J. Appl. Phycol. 30 (2018) 2463–2473.
DOI: 10.1007/s10811-018-1425-2
Google Scholar
[29]
S. Benhissoune, C.F. Boudouresque, M. Verlaque, A checklist of the seaweeds of the Mediterranean and Atlantic coasts of Morocco. II. Phaeophyceae, Bot. Mar. 45 (2002) 217–230.
DOI: 10.1515/bot.2002.021
Google Scholar
[30]
H. Riadi, M. Kallaz, Inventaire bibliographique des algues benthiques du littoral Marocain. I. Chlorophyceae et Phaeophyceae, Acta Bot. Malacit. 23 (1998) 23–41.
DOI: 10.24310/abm.v23i0.8548
Google Scholar
[31]
N. Hanif, M. Chair, M. Chbani Idrissi, T. Naoki, Contribution to the algal biodiversity study in the Moroccan Atlantic coast, Int. J. Innov. Res. Sci. Eng. Technol. 3 (2014) 12507–12524.
Google Scholar
[32]
Guiry, M. D., and Guiry, G. M. (2022). AlgaeBase (National University of Ireland, Galway: World-Wide Electronic Publication). Available online at: http://www. algaebase.org
Google Scholar
[33]
Gueye, M. F., Mbaye, M. S., Dieme, N. A., Gueye, F. K., Diouf, N., and Noba, K. (2020). Structure et répartition des macroalgues de la côte Nord du Sénégal (Yoff, Kayar, Mboro, Loumpoul et Saint Louis). J. Appl. Biosci. 153, 15798–15806.
Google Scholar
[34]
N. Bahammou, O. Cherifi, H. Bouamama, N. Rezzoum, H. Sabri, Y. Boundir, Checklist of Rhodophyceae and the first report of Aglaothamnion tripinnatum and Gaillona gallica in the Moroccan coastline, Egypt. J. Aquat. Res. (2021).
DOI: 10.1016/j.ejar.2021.04.007
Google Scholar
[35]
E.S. Poloczanska, M.T. Burrows, C.J. Brown, J. García Molinos, B.S. Halpern, O. Hoegh-Guldberg, Responses of marine organisms to climate change across oceans, Front. Mar. Sci. 3 (2016).
DOI: 10.3389/fmars.2016.00062
Google Scholar
[36]
J. Lenoir, R. Bertrand, L. Comte, L. Bourgeaud, T. Hattab, J. Murienne, Species better track climate warming in the oceans than on land, Nat. Ecol. Evol. 4 (2020) 1044–1059.
DOI: 10.1038/s41559-020-1198-2
Google Scholar
[37]
C. Parmesan, M.D. Morecroft, Y. Trisurat, R. Adrian, G.Z. Anshari, A. Arneth, Terrestrial and freshwater ecosystems and their services, in: H.-O. Portner, D.C.R., M. Tignor, et al. (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability, Cambridge University Press, 2022, p.197–377.
Google Scholar
[38]
C.L. Hurd, P.J. Harrison, K. Bischof, C.S. Lobban, Seaweed Ecology and Physiology, 2nd ed., Cambridge University Press, Cambridge, 2014, p.551.
DOI: 10.1111/jpy.12398
Google Scholar
[39]
R. Taylor, R.L. Fletcher, J.A. Raven, Preliminary studies on the growth of selected green tide algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate, Bot. Mar. 44 (2001) 327–336.
DOI: 10.1515/BOT.2001.042
Google Scholar
[40]
X.X. Zou, S.S. Xing, X. Su, J. Zhu, H.Q. Huang, S.X. Bao, The effects of temperature, salinity and irradiance upon the growth of Sargassum polycystum C. Agardh (Phaeophyceae), J. Appl. Phycol. 30 (2018) 1207–1215.
DOI: 10.1007/s10811-017-1282-4
Google Scholar
[41]
C. Yarish, A.M. Breeman, C. Van den Hoek, Survival strategies and temperature responses of seaweeds belonging to different biogeographic distribution groups, Bot. Mar. 29 (1986) 215–230.
DOI: 10.1515/botm.1986.29.3.215
Google Scholar
[42]
S. Yoshioka, A. Kato, K. Koike, N. Murase, M. Baba, L.M. Liao, Effects of water temperature, light and nitrate on the growth of sporelings of the nongeniculate coralline alga Lithophyllum okamurae (Corallinales, Rhodophyta), J. Appl. Phycol. 32 (2020).
DOI: 10.1007/s10811-020-02100-9
Google Scholar
[43]
K. Lüning, Seaweeds: Their Environment, Biogeography, and Ecophysiology, Wiley, New York, 1990.
Google Scholar
[44]
R. Subur, M. Irfan, N. Akbar, The effect of NPK fertilizer with different dosage on the growth rate seaweed (Caulerpa racemosa), Depik 10 (2021) 207–210.
DOI: 10.13170/depik.10.3.20848
Google Scholar
[45]
S.A. Ali, H. Anshary, A.M. Tahya, Environmental parameters and specific growth of Kappaphycus alvarezii in Saugi Island, South Sulawesi Province, Indonesia, Aquac. Aquar. Conserv. Legisl. 10 (2017) 698–702.
Google Scholar
[46]
M. Robuchon, Étude spatio-temporelle de la biodiversité des forêts de laminaires des côtes bretonnes par une approche intégrée de génétique des populations et d'écologie des communautés, Doctoral Dissertation, MNHN Paris, 2014.
DOI: 10.2307/jj.5024379.12
Google Scholar
[47]
L. Benedetti-Cecchi, F. Bulleri, F. Cinelli, The interplay of physical and biological factors in maintaining mid-shore and low-shore assemblages on rocky coasts in the North-West Mediterranean, Oecologia 123 (2000) 406–417.
DOI: 10.1007/s004420051028
Google Scholar
[48]
J. Lubchenco, Algal zonation in the New England rocky intertidal community: an experimental analysis, Ecology 61 (1980) 333–344.
DOI: 10.2307/1935192
Google Scholar
[49]
M.W. Schonbeck, T.A. Norton, Factors controlling the lower limits of fucoid algae on the shore, J. Exp. Mar. Biol. Ecol. 43 (1980) 131–150.
DOI: 10.1016/0022-0981(80)90021-0
Google Scholar
[50]
S.J. Hawkins, R.G. Hartnoll, Factors determining the upper limits of intertidal canopy forming algae, Mar. Ecol. Prog. Ser. 20 (1985) 265–271.
DOI: 10.3354/meps020265
Google Scholar
[51]
A.R.O. Chapman, Competitive interactions between Fucus spiralis L. and Fucus vesiculosus L. (Fucales, Phaeophyta), Hydrobiologia 204/205 (1990) 205–209.
DOI: 10.1007/bf00040235
Google Scholar