Spatial and Temporal Variations in Macroalgal Biodiversity on the Intertidal Rocky Shores of the Doukkala Coast (Atlantic Morocco)

Article Preview

Abstract:

Morocco, bordered by the Atlantic Ocean and the Mediterranean Sea, is recognized as a country of high biodiversity, particularly rich in marine flora such as macroalgae. These organisms are widely distributed along the coasts and play a fundamental role in maintaining the ecological balance of coastal marine ecosystems. This study aims to assess the spatial and temporal variability of macroalgal diversity along the Doukkala coast (Atlantic Morocco), a region known for its ecological and economic importance. From January to December 2019, monthly surveys were conducted in the intertidal zone across selected sites. The investigation focused on species composition, functional groups, and percentage cover in relation to seasonal fluctuations in key physicochemical parameters, including temperature, salinity, pH, nitrate (NO₃⁻), orthophosphate (PO₄³⁻), and dissolved oxygen. Ecological index analysis and principal component analysis (PCA) were also performed to assess the relationships between macroalgal diversity and environmental factors. A total of 206 macroalgal species were identified, including 151 Rhodophyta, 29 Phaeophyta, and 26 Chlorophyta. Seasonal trends indicated a notable increase in species richness during the spring. The diversity and distribution of macroalgae along the Doukkala coast were strongly influenced by both physical factors (temperature, salinity) and chemical parameters (nitrate, orthophosphate, and dissolved oxygen). this study highlights the dynamic response of macroalgal communities to environmental variability, offering essential insights into the ecological status and resilience of marine ecosystems along the Atlantic coast of Doukkala.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 32)

Pages:

3-20

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Strong, E. Andonegi, K.C. Bizsel, R. Danovaro, M. Elliott, A. Franco, E. Garces, Little, S, K. Mazik, S. Moncheva, N. Papadopoulou, J. Patrício, A.M. Queirós, C. Smith, K. Stefanova, O. Solaun, Marine biodiversity and ecosystem function relation-ships: the potential for practical monitoring applications. Estuar. Coast. Shelf Sci.161 (2015), 46-64.

DOI: 10.1016/j.ecss.2015.04.008

Google Scholar

[2] N. Arina, M. Rozaimi, N.F.A. Zainee, High localised diversity of Halimeda (Chlorophyta: Bryopsidales) in a tropical marine park from Pahang, Malaysia. Reg. Stud. Mar. Sci. 31, 100773. http://dx.doi.org/10.1016/j.rsma. 2019.100773.

DOI: 10.1016/j.rsma.2019.100773

Google Scholar

[3] B. Benhniya, F. Lakhdar, N. Rezzoum, S. Etahiri, GC/MS analysis and antibacterial potential of macroalgae extracts harvested on Moroccan Atlantic coast, Egypt. J. Chem. 65 (2022),171–179, https://doi.org/10.21608/ EJCHEM.2022.117053.5301.

DOI: 10.21608/ejchem.2022.117053.5301

Google Scholar

[4] S. Etahiri, A. El Kouri, V. Bultel-Ponce, M. Guyot, O. Assobhei, Antibacterial bromophenol from the marine red algae Pterosiphonia complanata. Nat Prod Commun. 2(2007), 749-752.

DOI: 10.1177/1934578x0700200708

Google Scholar

[5] M.S.K. Khan, M.E. Hoq, M.A. Haque, M.M. Islam, M.M. Hoque, Nutritional evaluation of some seaweeds from the Bay of Bengal in contrast to inland fishes of Bangladesh. IOSRJ Environ Sci Toxicol Food Technol10 (2016), 59-65.

Google Scholar

[6] A. Duran, L. Collado-Vides, L. Palma, D.E. Burkepile, Interactive effects of herbivory and substrate orientation on algal community dynamics on a coral reef. Mar Biol 165 (2018),1-9

DOI: 10.1007/s00227-018-3411-2

Google Scholar

[7] G. Bonanno, M. Orlando-Bonaca, Chemical elements in Mediterranean macroalgae: a review. Ecotoxicol Environ Saf 148 (2018), 44-71

DOI: 10.1016/j.ecoenv.2017.10.013

Google Scholar

[8] D. Oryza, S. Mahanal, M.S Sari, Identifikasi Rhodophyta sebagai bahan ajar di perguruan tinggi [Identification of Rhodophyta as teaching materials in higher education]. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 2(3) (2017), 309–314. https://doi. org/10.17977/jptpp. v2i3.8582.

DOI: 10.17977/jptpp.v4i8.12685

Google Scholar

[9] Li, J.Y., Liu, Y.C., Liu, Y., Wang, Q.H., Gao, X., Gong, Q.L. (2019). Effects of temperature and salinity on the growth and biochemical composition of the brown alga Sargassum fusiforme (Fucales, Phaeophyceae). J. Appl. Phycol. 31, 3061–3068.

DOI: 10.1007/s10811-019-01795-9

Google Scholar

[10] R.T. Paine, Food web complexity and species diversity. Am. Nat. 100 (1966), 65–75.

Google Scholar

[11] E.P. Dahlhoff, Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annu. Rev. Physiol. 66 (2004), 183–207.

DOI: 10.1146/annurev.physiol.66.032102.114509

Google Scholar

[12] J.J. Cruz-Motta, P. Miloslavich, G. Palomo, K. Iken, B. Konar, G. Pohle, T. Trott, L. Benedetti-Cecchi, C. Herrera, A. Hernández, A. Sardi, A. Bueno, J. Castillo, E. Klein, E. Guerras-Castro, J. Gobin, D.I. Gómez, R. Riosmena-Rodríguez, A. Mead, G. Bigatti, A. Knowlton, Y. Shirayama, Patterns of spatial variation of assemblages associated with intertidal rocky shores: a global perspective. PLoS One 5 (2010), e14354.

DOI: 10.1371/journal.pone.0014354

Google Scholar

[13] M.P. Raffo, V. Lo Russo, E. Schwindt, Introduced and native species on rocky shore macroalgal assemblages: zonation patterns, composition and diversity. Aquat. Bot. 112 (2014), 57–65.

DOI: 10.1016/j.aquabot.2013.07.011

Google Scholar

[14] Byrnes, J.E., Reynolds, P.L., Stachowicz, J.J. (2007). Invasions and extinctions reshape coastal marine food webs. PLoS One 2(3), e295. http://dx.doi.org/.

DOI: 10.1371/journal.pone.0000295

Google Scholar

[15] Zainee, N.F.A., Rozaimi, M. (2020). Influence of monsoonal storm disturbance on the diversity of intertidal macroalgae along the eastern coast of Johor (Malaysia). Reg. Stud. Mar. Sci. 40, 101481.

DOI: 10.1016/j.rsma.2020.101481

Google Scholar

[16] Bachot, X., Riera, R. (2025). How the invasive algae Rugulopteryx okamurae affect coastal biodiversity? Insights from coastal fish communities of Gran Canaria (NE Atlantic Ocean). J. Sea Res., 102568.

DOI: 10.1016/j.seares.2025.102568

Google Scholar

[17] Kulshreshtha, G., Hincke, M.T., Prithiviraj, B., Critchley, A. (2020). A review of the varied uses of macroalgae as dietary supplements in selected poultry with special reference to laying hen and broiler chickens. J. Mar. Sci. Eng. 8.

DOI: 10.3390/jmse8070536

Google Scholar

[18] Jelic Mrcelic, G., Krstulović Šifner, S., Nerlović, V. (2024). A comparison between the production of edible macroalgae worldwide and in the Mediterranean Sea. Oceans 5, 442–465. https://doi.org/10.3390/ oceans5030026

DOI: 10.3390/oceans5030026

Google Scholar

[19] B. Benhniya, F. Lakhdar, S. Al Qoh, H. Zidane, S. Etahiri, N. Rezzoum, New checklist of marine macroalgae in the coast of El Jadida (Morocco): temporal variation of physico-chemical parameters of water, Ecol. Front. (avr. 2024) 760–768.

DOI: 10.1016/j.ecofro.2024.02.008

Google Scholar

[20] E. Ramos, A. Puente, J.A. Juanes, An ecological classification of rocky shores at a regional scale: a predictive tool for management of conservation values, Mar. Ecol. 37 (2016) 311–328.

DOI: 10.1111/maec.12280

Google Scholar

[21] P. Gayral, Algues de la côte atlantique marocaine, Casablanca, Morocco, Edita, 1958, p.523.

Google Scholar

[22] FAO, Fishery Statistical Collections, Global Aquaculture Production, 2018. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en.

DOI: 10.4060/cb1213t

Google Scholar

[23] N.J. Turland, J.H. Wiersema, F.R. Barrie, W. Greuter, D.L. Hawksworth, P.S. Herendeen, S. Knapp, W.H. Kusber, D.Z. Li, K. Marhold, T.W. May, J. McNeill, A.M. Monro, J. Prado, M.J. Price, G.F. Smith, International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code), Regnum Vegetabile 159, Koeltz Botanical Books, Glashütten, 2018.

DOI: 10.12705/code.2018

Google Scholar

[24] M.D. Guiry, G.M. Guiry, Algaebase. World-wide electronic publication, National University of Ireland, Galway, 2020. http://www.algaebase.org.

Google Scholar

[25] C.E. Shannon, W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, 1949.

Google Scholar

[26] L.W. Winkler, Die bestimmung des in Wasser gelösten sauerstoffen, Ber. Dtsch. Chem. Ges. 21 (1988) 2843–2855.

DOI: 10.1002/cber.188802102122

Google Scholar

[27] AFNOR, Qualité de l'Eau : Analyse Biochimique et Biologiques, Analyse Microbiologique, Textes Réglementaires, 6e Édition, Tome 4, Paris, 2001, p.695.

Google Scholar

[28] R. Santos, R.A. Melo, Global shortage of technical agars: Back to basics (resource management), J. Appl. Phycol. 30 (2018) 2463–2473.

DOI: 10.1007/s10811-018-1425-2

Google Scholar

[29] S. Benhissoune, C.F. Boudouresque, M. Verlaque, A checklist of the seaweeds of the Mediterranean and Atlantic coasts of Morocco. II. Phaeophyceae, Bot. Mar. 45 (2002) 217–230.

DOI: 10.1515/bot.2002.021

Google Scholar

[30] H. Riadi, M. Kallaz, Inventaire bibliographique des algues benthiques du littoral Marocain. I. Chlorophyceae et Phaeophyceae, Acta Bot. Malacit. 23 (1998) 23–41.

DOI: 10.24310/abm.v23i0.8548

Google Scholar

[31] N. Hanif, M. Chair, M. Chbani Idrissi, T. Naoki, Contribution to the algal biodiversity study in the Moroccan Atlantic coast, Int. J. Innov. Res. Sci. Eng. Technol. 3 (2014) 12507–12524.

Google Scholar

[32] Guiry, M. D., and Guiry, G. M. (2022). AlgaeBase (National University of Ireland, Galway: World-Wide Electronic Publication). Available online at: http://www. algaebase.org

Google Scholar

[33] Gueye, M. F., Mbaye, M. S., Dieme, N. A., Gueye, F. K., Diouf, N., and Noba, K. (2020). Structure et répartition des macroalgues de la côte Nord du Sénégal (Yoff, Kayar, Mboro, Loumpoul et Saint Louis). J. Appl. Biosci. 153, 15798–15806.

Google Scholar

[34] N. Bahammou, O. Cherifi, H. Bouamama, N. Rezzoum, H. Sabri, Y. Boundir, Checklist of Rhodophyceae and the first report of Aglaothamnion tripinnatum and Gaillona gallica in the Moroccan coastline, Egypt. J. Aquat. Res. (2021).

DOI: 10.1016/j.ejar.2021.04.007

Google Scholar

[35] E.S. Poloczanska, M.T. Burrows, C.J. Brown, J. García Molinos, B.S. Halpern, O. Hoegh-Guldberg, Responses of marine organisms to climate change across oceans, Front. Mar. Sci. 3 (2016).

DOI: 10.3389/fmars.2016.00062

Google Scholar

[36] J. Lenoir, R. Bertrand, L. Comte, L. Bourgeaud, T. Hattab, J. Murienne, Species better track climate warming in the oceans than on land, Nat. Ecol. Evol. 4 (2020) 1044–1059.

DOI: 10.1038/s41559-020-1198-2

Google Scholar

[37] C. Parmesan, M.D. Morecroft, Y. Trisurat, R. Adrian, G.Z. Anshari, A. Arneth, Terrestrial and freshwater ecosystems and their services, in: H.-O. Portner, D.C.R., M. Tignor, et al. (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability, Cambridge University Press, 2022, p.197–377.

Google Scholar

[38] C.L. Hurd, P.J. Harrison, K. Bischof, C.S. Lobban, Seaweed Ecology and Physiology, 2nd ed., Cambridge University Press, Cambridge, 2014, p.551.

DOI: 10.1111/jpy.12398

Google Scholar

[39] R. Taylor, R.L. Fletcher, J.A. Raven, Preliminary studies on the growth of selected green tide algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate, Bot. Mar. 44 (2001) 327–336.

DOI: 10.1515/BOT.2001.042

Google Scholar

[40] X.X. Zou, S.S. Xing, X. Su, J. Zhu, H.Q. Huang, S.X. Bao, The effects of temperature, salinity and irradiance upon the growth of Sargassum polycystum C. Agardh (Phaeophyceae), J. Appl. Phycol. 30 (2018) 1207–1215.

DOI: 10.1007/s10811-017-1282-4

Google Scholar

[41] C. Yarish, A.M. Breeman, C. Van den Hoek, Survival strategies and temperature responses of seaweeds belonging to different biogeographic distribution groups, Bot. Mar. 29 (1986) 215–230.

DOI: 10.1515/botm.1986.29.3.215

Google Scholar

[42] S. Yoshioka, A. Kato, K. Koike, N. Murase, M. Baba, L.M. Liao, Effects of water temperature, light and nitrate on the growth of sporelings of the nongeniculate coralline alga Lithophyllum okamurae (Corallinales, Rhodophyta), J. Appl. Phycol. 32 (2020).

DOI: 10.1007/s10811-020-02100-9

Google Scholar

[43] K. Lüning, Seaweeds: Their Environment, Biogeography, and Ecophysiology, Wiley, New York, 1990.

Google Scholar

[44] R. Subur, M. Irfan, N. Akbar, The effect of NPK fertilizer with different dosage on the growth rate seaweed (Caulerpa racemosa), Depik 10 (2021) 207–210.

DOI: 10.13170/depik.10.3.20848

Google Scholar

[45] S.A. Ali, H. Anshary, A.M. Tahya, Environmental parameters and specific growth of Kappaphycus alvarezii in Saugi Island, South Sulawesi Province, Indonesia, Aquac. Aquar. Conserv. Legisl. 10 (2017) 698–702.

Google Scholar

[46] M. Robuchon, Étude spatio-temporelle de la biodiversité des forêts de laminaires des côtes bretonnes par une approche intégrée de génétique des populations et d'écologie des communautés, Doctoral Dissertation, MNHN Paris, 2014.

DOI: 10.2307/jj.5024379.12

Google Scholar

[47] L. Benedetti-Cecchi, F. Bulleri, F. Cinelli, The interplay of physical and biological factors in maintaining mid-shore and low-shore assemblages on rocky coasts in the North-West Mediterranean, Oecologia 123 (2000) 406–417.

DOI: 10.1007/s004420051028

Google Scholar

[48] J. Lubchenco, Algal zonation in the New England rocky intertidal community: an experimental analysis, Ecology 61 (1980) 333–344.

DOI: 10.2307/1935192

Google Scholar

[49] M.W. Schonbeck, T.A. Norton, Factors controlling the lower limits of fucoid algae on the shore, J. Exp. Mar. Biol. Ecol. 43 (1980) 131–150.

DOI: 10.1016/0022-0981(80)90021-0

Google Scholar

[50] S.J. Hawkins, R.G. Hartnoll, Factors determining the upper limits of intertidal canopy forming algae, Mar. Ecol. Prog. Ser. 20 (1985) 265–271.

DOI: 10.3354/meps020265

Google Scholar

[51] A.R.O. Chapman, Competitive interactions between Fucus spiralis L. and Fucus vesiculosus L. (Fucales, Phaeophyta), Hydrobiologia 204/205 (1990) 205–209.

DOI: 10.1007/bf00040235

Google Scholar