Development and Implementation of an Artificial Neural Network for the Simulation of Flood Phenomena in a Natural Area

Article Preview

Abstract:

In this study an Artificial Neural Network for the simulation of flood phenomena in a natural area was developed. Then this network was implemented in the urban area of a Greek city (Amyntaio, Florina). The neural networks have many advantages: non-linearity, adaptability, input-output mapping, indicative response, damage resistance, possibility of implementation with VLSI (Very Large Scale Integration) technology, content related information and analysis and design uniformity. With neural networks, mathematical simulation of the considered phenomenon is not attempted, but the extraction of quantitative conclusions for specific data, based on similar cases. With the development and implementation of this network all the points that are in risk for flood are identified. The results showed that the help of an Artificial Neural Network in these cases is crucial for the future decisions in cases of flood phenomena.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 4)

Pages:

77-87

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Tohma, S. Igata, S. Rainfall estimation from GMS imagery data using neural network. WIT Trans. on Ecol. and the Envir. 7 (1970).

Google Scholar

[2] H.D. Navone, H.A. Ceccatto. Predicting Indian monsoon rainfall: a neural network approach. Clim. Dynam. 10(6-7) (1994) 305-312.

DOI: 10.1007/bf00228029

Google Scholar

[3] H. Raman, N. Sunilkumar. Multivariate modelling of water resources time series using artificial neural networks. Hydr. Sci. J. 40(2) (1995) 145-163.

DOI: 10.1080/02626669509491401

Google Scholar

[4] A.H. Halff, H.M. Halff, M. Azmoodeh. Predicting runoff from rainfall using neural networks. In Eng. Hydr. (1993) 760-765.

Google Scholar

[5] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. II: Hydrologic applications. J. of Hydr. Eng. 5(2) (2000) 124-137.

DOI: 10.1061/(asce)1084-0699(2000)5:2(124)

Google Scholar

[6] M.L. Zhu, M. Fujita, N. Hashimoto. Application of neural networks to runoff prediction. In Stochastic and statistical methods in hydrology and environmental engineering (1994) 205-216.

DOI: 10.1007/978-94-017-3083-9_16

Google Scholar

[7] J. Smith, R.N. Eli. Neural-network models of rainfall-runoff process. J. of wat. res. plan. and manag. 121(6) (1995) 499-508.

Google Scholar

[8] P. Carriere, S. Mohaghegh, R. Gaskari. Performance of a virtual runoff hydrograph system. J. of wat. res. plan. and manag. 122(6) (1996) 421-427.

DOI: 10.1061/(asce)0733-9496(1996)122:6(421)

Google Scholar

[9] D.N. Kumar, K.S. Raju, T. Sathish. River flow forecasting using recurrent neural networks. Wat. res. manag., 18(2) (2004) 143-161.

DOI: 10.1023/b:warm.0000024727.94701.12

Google Scholar

[10] N. Karunanithi, W.J. Grenney, D. Whitley, K. Bovee. Neural networks for river flow prediction. J. of comp. in civ. eng. 8(2) (1994) 201-220.

DOI: 10.1061/(asce)0887-3801(1994)8:2(201)

Google Scholar

[11] M. Markus, J.D. Salas, H.S. Shin. Predicting streamflows based on neural networks. In Proc. of the 1st Int. Conf. on Wat. Res. 1 (1995) 1641-1646.

Google Scholar

[12] M. Tawfik, A. Ibrahim, H. Fahmy, H. Hysteresis sensitive neural network for modeling rating curves. J. of Comp. in Civ. Eng. 11(3) (1997) 206-211.

DOI: 10.1061/(asce)0887-3801(1997)11:3(206)

Google Scholar

[13] H.R. Maier, G.C. Dandy. The use of artificial neural networks for the prediction of water quality parameters. Wat. res. res. 32(4) (1996) 1013-1022.

DOI: 10.1029/96wr03529

Google Scholar

[14] N. Sandhu, R. Finch. Emulation of DWRDSM using artificial neural networks and estimation of Sacramento River flow from salinity. In North Amer. Wat. and Env. Cong. & Dest. Wat. (1996) 4335-4340.

Google Scholar

[15] P.H. Hutton, N. Sandhu, F.I. Chung. Predicting THM formation with artificial neural networks. In North Amer. Wat. and Env. Cong. & Dest. Wat. (1996) 3551-3556.

Google Scholar

[16] H. Raman, V. Chandramouli. Deriving a general operating policy for reservoirs using neural network. J. of Wat. Res. Plan. and Manag. 122(5) (1996) 342-347.

DOI: 10.1061/(asce)0733-9496(1996)122:5(342)

Google Scholar

[17] A.R.A. Aziz, K.F.V. Wong. A neural‐network approach to the determination of aquifer parameters. Groundwater 30(2) (1992) 164-166.

Google Scholar

[18] P.C. Nayak, Y.S. Rao, K.P. Sudheer. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Wat. res. res. 20(1) (2006) 77-90.

DOI: 10.1007/s11269-006-4007-z

Google Scholar

[19] C.C. Yang, S.O. Prasher, R. Lacroix. Applications of artificial neural networks to simulate water-table depths under subirrigation. Can. Wat. Res. J. 21(1) (1996) 27-44.

DOI: 10.4296/cwrj2101027

Google Scholar

[20] S.K. Starrett, S.K. Starrett, Y.M. Najjar, J.C. & Hill. Neural networks predict pesticide leaching. In North Amer. Wat. and Env. Cong. & Dest. Wat. (1996) 1693-1698.

Google Scholar

[21] C. Ray, & K.K. Klindworth. Use of artificial neural networks for agricultural chemical assessment of rural private wells. In North Amer. Wat. and Env. Cong. & Dest. Wat. (1996) 1687-1692.

Google Scholar

[22] L.L. Rogers, F.U. Dowla, F. U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Wat. Res. Res. 30(2) (1994) 457-481.

DOI: 10.1029/93wr01494

Google Scholar

[23] S.V.N. Rao, B.S. Thandaveswara, S.M. Bhallamudi, V. Srinivasulu. Optimal groundwater management in deltaic regions using simulated annealing and neural networks. Wat. Res. Manag. 17(6) (2003) 409-428.

DOI: 10.1023/b:warm.0000004921.74256.a9

Google Scholar

[24] A. Sentas, L. Karamoutsou, N. Charizopoulos, T. Psilovikos, A. Psilovikos, A. Loukas. The use of stochastic models for short-term prediction of Water Parameters of the Thesaurus Dam, River Nestos, Greece. In Mul. Dig. Pub. Inst. Proc. 2(11) (2018) 634.

DOI: 10.3390/proceedings2110634

Google Scholar

[25] M.J. Alizadeh, M.R. Kavianpour. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Mar. pol. Bul. 98(1-2) (2015) 171-178.

DOI: 10.1016/j.marpolbul.2015.06.052

Google Scholar

[26] S. Emamgholizadeh, H. Kashi, I. Marofpoor, E. Zalaghi. Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. Int. J. of Env. Sci. and Tech. 11(3) (2014) 645-656.

DOI: 10.1007/s13762-013-0378-x

Google Scholar

[27] I. Tsoulos, D. Gavrilis, E. Glavas. Neural network construction and training using grammatical evolution. Neurocomputing. 72(1-3) (2008) 269-277.

DOI: 10.1016/j.neucom.2008.01.017

Google Scholar

[28] A.K. Soni, S. S. Godara, R. Gade, V, Brenia, R.S. Shekhawat, Kuldeep K. Saxena, R. Prasad. Modelling and thermal analysis for automobile piston using ANSYS. Int. J. on Int. Des. and Man. (2022)

DOI: 10.1007/s12008-022-01042-5

Google Scholar

[29] S. Hiremath, D. S. Chiniwar, Z. Singh, A. Behera, K.K. Saxena, H. M. Vishwanatha. Modelling and simulation of lightweight hollow pins as a substitution for solid shear pins used for assembly joints in aerospace applications. Int. J. on Int. Des. and Man. (2022)

DOI: 10.1007/s12008-022-01081-y

Google Scholar

[30] I. Petikas, E. Keramaris, V. Kanakoudis. A novel method for the automatic extraction of quality non-planar river cross-sections from digital elevation models. Water. 12(12) (2020) 3553.

DOI: 10.3390/w12123553

Google Scholar

[31] S. Nevo. The Technology Behind our Recent Improvements in Flood Forecasting. Blog (2020)

Google Scholar

[32] Information on: https://www.tensorflow.org/

Google Scholar

[33] L. Benyahya, A. St-Hilaire, T.B. Quarda, B. Bobée, B. Ahmadi-Nedushan, B. Modeling of water temperatures based on stochastic approaches: case study of the Deschutes River. J. of Env. Eng. and Sci., 6(4) (2007) 437-448.

DOI: 10.1139/s06-067

Google Scholar

[34] A.G. Barto, R.S. Sutton, C.W. Anderson. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE trans. on syst. man and cyb. 5 (1983) 834-846.

DOI: 10.1109/tsmc.1983.6313077

Google Scholar