Design of a Mono-Rectangular Cored Symmetrical PCF Structure for Sensing Differently Concentrated Glucose Solutions in THz Regime

Article Preview

Abstract:

This research illustrates a simple mono-rectangular cored symmetrical PCF (MRC-SPCF) sensor that is used for detecting different concentrated glucose samples (from 0% to 60%). The simulations are carried out within 1-2 THz regimes based on the principles of the finite element method (FEM). After a completed investigation we have found the values of a range of optical properties that are comparable to the previously published results. From our investigation, we found 94.43% relative sensitivity with a negligible effective material loss (EML) of 0.004 cm-1 at 1.8 THz respectively for 60% and 20% concentrated glucose solution. Besides this proposed MRC-SPCF sensor also expresses almost zero confinement losses for all the glucose samples within the operated frequency range. Hence we can admire that this proposed MRC-SPCF sensor can be a potential aspirant in chemical sensing which can make an impact both in the medical and industrial sectors.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 5)

Pages:

69-76

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.H. Jibon, M. Ahmed, M.A. Elnaby, A.N. Rashed, M. Eid, Design mechanism and performance evaluation of photonic crystal fiber (PCF)-based sensor in the THz regime for sensing noxious chemical substrates of poultry feed, Applied Physics A, 128 (2) (2022) 1-9.

DOI: 10.1007/s00339-022-05302-9

Google Scholar

[2] R.H. Jibon, S. Biswas, S. Biswas, N.F.I. Nira, Poisonous chemical detection in the THz regime using PCF: Design and numerical investigation, Journal of Optics, 50 (4) (2021) 671-680.

DOI: 10.1007/s12596-021-00737-4

Google Scholar

[3] R.H. Jibon, E. Podder, and A.A.M. Bulbul, Adrenal Glands Cancer Detection using PCF-based Biosensor, 1st International Conference on Electronics, Communications and Information Technology, IEEE (2021) 1-4.

DOI: 10.1109/icecit54077.2021.9641070

Google Scholar

[4] S. Geerthana, A.S. Raja, D.S. Sundar, Design and optimization of photonic crystal fiber with improved optical characteristics, Journal of Nonlinear Optical Physics & Materials, 24 (4) (2015) 1550051.

DOI: 10.1142/s0218863515500514

Google Scholar

[5] C. McCague, M. Fabian, M. Karimi, M. Bravo, L.R. Jaroszewicz, P. Mergo, T. Sun, K.T. Grattan, Novel sensor design using photonic crystal fibres for monitoring the onset of corrosion in reinforced concrete structures, Journal of Lightwave Technology, 32 (5) (2014) 891-897.

DOI: 10.1109/jlt.2013.2293120

Google Scholar

[6] M. Morshed, M.F. Arif, S. Asaduzzaman, K. Ahmed, Design and characterization of photonic crystal fiber for sensing applications, European Scientific Journal, 11 (12) (2015) 1-4.

Google Scholar

[7] A.M. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications, Journal of Sensors, (2012) 1-4.

Google Scholar

[8] S. Olyaee, M. Seifouri, A. Nikoosohbat, M.S. Abadi, Low nonlinear effects index-guiding nanostructured photonic crystal fiber, International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering, 9 (2) (2015) 253-260.

Google Scholar

[9] C.M. Cordeiro, E.M.D. Santos, C.B. Cruz, C.J. de Matos, D.S. Ferreira, Lateral access to the holes of photonic crystal fibers–selective filling and sensing applications, Optics Express, 14 (18) (2006) 8403-8415.

DOI: 10.1364/oe.14.008403

Google Scholar

[10] H. Ademgil, Highly sensitive octagonal photonic crystal fiber based sensor, Optik, 125 (20) (2014) 6274-6282.

DOI: 10.1016/j.ijleo.2014.08.018

Google Scholar

[11] S. Asaduzzaman, M.F. Arif, K. Ahmed, P. Dhar, Highly sensitive simple structure circular photonic crystal fiber based chemical sensor, International WIE conference on electrical and computer engineering, IEEE (2015) 151-154.

DOI: 10.1109/wiecon-ece.2015.7443884

Google Scholar

[12] K. Ahmed, M. Morshed, Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications, Sensing and Bio-Sensing Research, 7 (2016)1-6.

DOI: 10.1016/j.sbsr.2015.10.005

Google Scholar

[13] S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, Hybrid photonic crystal fiber in chemical sensing, Springer Plus 5 (2016) 748-759.

DOI: 10.1186/s40064-016-2415-y

Google Scholar

[14] B.K. Paul, M.S. Islam., K. Ahmed, S. Asaduzzaman, Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber, Phot. Sens, 7 (2017) 123-130.

DOI: 10.1007/s13320-017-0376-6

Google Scholar

[15] R.H. Jibon, M.E. Rahaman, M.A. Alahe, Detection of primary chemical analytes in the THz regime with photonic crystal fiber, Sensing and Bio-Sensing Research, 33 (2021) 100427.

DOI: 10.1016/j.sbsr.2021.100427

Google Scholar

[16] M.E. Rahaman, R.H. Jibon, M.S. Ahsan, F. Ahmed, I.B. Sohn, Glucose Level Measurement Using Photonic Crystal Fiber–based Plasmonic Sensor, Plasmonics, (2021) 1-11.

DOI: 10.1007/s11468-021-01497-4

Google Scholar

[17] M.E. Rahaman, R.H. Jibon, H.S. Mondal, M.B. Hossain, A.A.M. Bulbul, R. Saha, Design and optimization of a PCF-based chemical sensor in THz regime, Sensing and Bio-Sensing Research, 32 (2021) 100422.

DOI: 10.1016/j.sbsr.2021.100422

Google Scholar

[18] R.H. Jibon, M. Ahmed, and M.K. Hasan, Identification of detrimental chemicals of plastic products using PCF in the THz regime, Measurement: Sensors, 17 (2021) 100056.

DOI: 10.1016/j.measen.2021.100056

Google Scholar

[19] R.T. Bise, D.J. Trevor, Sol-gel derived microstructured fiber: fabrication and characterization, Optical Fiber Communication Conference, Optical Society of America, 2005, p. OWL6.

DOI: 10.1109/ofc.2005.192772

Google Scholar

[20] A. Ghazanfari, W. Li, M.C. Leu, G.E. Hilmas, A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying, Additive Manufacturing 15 (2017) 102-112.

DOI: 10.1016/j.addma.2017.04.001

Google Scholar

[21] G. Barton, M.A. van Eijkelenborg, G. Henry, M.C. Large, J. Zagari, Fabrication of microstructured polymer optical fibres, Optical Fiber Technology 10 (4) (2004) 325-335.

DOI: 10.1016/j.yofte.2004.05.003

Google Scholar

[22] H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, T.M. Monro, 3D-printed extrusion dies: a versatile approach to optical material processing, Optical Materials Express 4 (8) (2014) 1494-1504.

DOI: 10.1364/ome.4.001494

Google Scholar

[23] M.B. Hossain, E. Podder, A. Adhikary, A.Al-Mamun, Optimized hexagonal photonic crystal fibre sensor for glucose sensing, Advances in Research 13 (3) (2018) 1-7.

DOI: 10.9734/air/2018/38972

Google Scholar

[24] J. Sultana, M.S. Islam, K. Ahmed, A. Dinovitser, B.W.-H. Ng, D. Abbott, Terahertz detection of alcohol using a photonic crystal fiber sensor, Applied optics 57 (10) (2018) 2426-2433.

DOI: 10.1364/ao.57.002426

Google Scholar

[25] M.S. Islam, J. Sultana, K. Ahmed, M.R. Islam, A. Dinovitser, B.W.-H. Ng, D. Abbott, A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime, IEEE Sensors Journal 18 (2) (2017) 575-582.

DOI: 10.1109/jsen.2017.2775642

Google Scholar

[26] F. Iqbal, S. Biswas, A.A.-M. Bulbul, H. Rahaman, M.B. Hossain, M.E. Rahaman, M.A. Awal, Alcohol sensing and classification using PCF-based sensor, Sensing and Bio-Sensing Research 30 (2020) 100384.

DOI: 10.1016/j.sbsr.2020.100384

Google Scholar