Influence of the Nitrogen Flowrates on the Bio Oil Production and Characterization from Pyrolysis of Oil Palm Empty Fruit Bunch

Article Preview

Abstract:

Recent studies indicate that bio-oil production from EFB is highly influenced by the temperature during pyrolysis. In this study the pyrolysis process was conducted at the optimum temperature of 500°C for 60 minutes and the nitrogen gas flowrate (N2) was varied between 1 and 3 L/min. The bio-oil itself can be obtained from the condensed gas pyrolysis product. The characteristics of bio-oil were then identified based on biofuel quality standards. The bio-oil was then tested in order to determine its physical properties such as its density, water content, and acid number. Besides, the chemical components of the bio oil were identified by using GC-MS. The results show that the density of bio-oil is within the range of 0.9918 - 1.0083 g/cm3. The highest water content produced is 27.22% at a flow rate of 1 L/min. The acid number of bio oil is ranging from 124.9 – 139.6 mg KOH / g. According to GCMS test results, linoleic acid content is high at a flow rate of 1 L / min, while hexadecane content dominates by 15.79% at a 2 L / min rate. Further observation on the rate of 3 L / min shows that phenol content increases.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 6)

Pages:

17-27

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Perea-Moreno, E. Samerón-Manzano, A.J. Perea-Moreno, Sustain. 11 (2019) 863.

DOI: 10.3390/su11030863

Google Scholar

[2] W. Hidayat, I.T. Rani, T. Yulianto, I.G. Febryano, D.A. Iryani, U. Hasanudin, S. Lee, S. Kim, J. Yoo, A. Haryanto, J. Rekayasa Proses 14 (2020) 169–181.

DOI: 10.22146/jrekpros.56817

Google Scholar

[3] S. Salmina, J. Spasial 3 (2017) 33–40.

Google Scholar

[4] A. Lya, Udiantoro, H. Abdul, Ziraa'Ah 41 (2016) 97–102.

Google Scholar

[5] A. Ferdiyanto, F.H. Munfaridi, A. Hidayat, Khazanah J. Mhs. 8 (2020) 12.

Google Scholar

[6] K. Ridhuan, D. Irawan, Y. Zanaria, F. Firmansyah, Media Mesin 20 (2019) 18–27.

DOI: 10.23917/mesin.v20i1.7976

Google Scholar

[7] F. Febriyanti, N. Fadila, A.S. Sanjaya, Y. Bindar, A. Irawan, J. Chemurg. 3 (2019) 12.

Google Scholar

[8] M.A. Sukiran, L.S. Kheang, N.A. Bakar, C.Y. May, Am. J. Appl. Sci. 11 (2014) 606–610.

Google Scholar

[9] Ministry of Energy and Mineral Resources, Standar Dan Mutu (Spesifikasi) Bahan Bakar Nabati (Biofuel) Jenis Biodiesel Sebagai Bahan Bakar Lain Yang Dipasarkan Di Dalam Negeri, 2019.

Google Scholar

[10] D.A. Streitwieser, D.O. Villamil, E. Gutierrez, S. Salazar, J.R. Mora, M.L. Bejarano, Chem. Eng. Technol. 44 (2021) 2092–2099.

DOI: 10.1002/ceat.202100232

Google Scholar

[11] Q.K. Tran, M.L. Le, H.V. Ly, H.C. Woo, J. Kim, S.S. Kim, J. Ind. Eng. Chem. 98 (2021) 168–179.

Google Scholar

[12] Hafiluddin, J. Rekayasa 5 (2012) 348–352.

Google Scholar

[13] S. Wibowo, J. Penelit. Has. Hutan 31 (2013) 258–270.

Google Scholar

[14] A.R. Mohamed, A.N. Awang, N.H. Mohd Salleh, R. Ahmad, IOP Conf. Ser. Mater. Sci. Eng. 932 (2020).

Google Scholar

[15] I.Y. Mohammed, Y.A. Abakr, F.K. Kazi, S. Yusuf, I. Alshareef, S.A. Chin, BioResources 10 (2015) 6457–6478.

DOI: 10.15376/biores.10.4.6457-6478

Google Scholar

[16] N. Ali, M. Saleem, K. Shahzad, S. Hussain, A. Chughtai, Polish J. Chem. Technol. 18 (2016) 88–96.

Google Scholar

[17] S. Yorgun, D. Yıldız, J. Anal. Appl. Pyrolysis 114 (2015) 68–78.

Google Scholar

[18] A.K. Varma, L.S. Thakur, R. Shankar, P. Mondal, Waste Manag. 89 (2019) 224–235.

Google Scholar

[19] A.R. Mohamed, Z. Hamzah, M.Z.M. Daud, Z. Zakaria, Procedia Eng. 53 (2013) 185–191.

Google Scholar

[20] S. Wbowo, L. Efiyanti, G. Pari, J. Penelit. Has. Hutann 35 (2015) 83–100.

Google Scholar

[21] P. Weerachanchai, C. Tangsathitkulchai, M. Tangsathitkulchai, (2007).

Google Scholar

[22] Y. Xu, X. Hu, W. Li, Y. Shi, in: S.S. Shaukat (Ed.), IntechOpen, Rijeka, 2011, p. Ch. 10.

Google Scholar

[23] M.A. Sukiran, L.S. Kheang, N.A. Bakar, C.Y. May, Am. J. Appl. Sci. 8 (2011) 984–988.

Google Scholar

[24] R.R. Amin, R.R. Sova, D.I. Laily, D.K. Maharani, J. Kim. Ris. 5 (2020) 151.

Google Scholar

[25] Z. Khoirunnisa, A.S. Wardana, R. Rauf, J. Kesehat. 12 (2020) 81–90.

Google Scholar

[26] A.S. Fitri, Y.A.N. Fitriana, Sainteks 17 (2020) 45.

Google Scholar

[27] R. Dolah, R. Karnik, H. Hamdan, Sustain. 13 (2021).

Google Scholar

[28] D.S. Fardhyanti, B. Triwibowo, H. Prasetiawan, A. Chafidz, B. Triwibowo, H. Prasetiawan, N.N. Cahyani, S. Andriyani, J. Bahan Alam Terbarukan 8 (2020) 90–100.

DOI: 10.15294/jbat.v8i2.22530

Google Scholar

[29] U.T. Santoso, A.B. Junaidi, Pros. Semin. Nas. Lingkung. Lahan Basah 4 (2019) 311–316.

Google Scholar

[30] R. Sudradjat, D. Setiawan, J. Penelit. Has. Hutan (2007) 41–56.

Google Scholar

[31] R.M. Sari, A. Kembaren, Talent. Conf. Ser. Sci. Technol. 2 (2019) 124–128.

Google Scholar

[32] I.Y. Yunanda, S. Bahri, E. Saputra, F. Teknik, U. Riau, J.T. Kimia, F. Teknik, U. Riau, Jom FTEKNIK 3 (2016) 1–8.

Google Scholar

[33] D.S. Fardhyanti, Megawati, A. Chafidz, H. Prasetiawan, P.T. Raharjo, U. Habibah, A.E. Abasaeed, Biomass Convers. Biorefinery (2022).

DOI: 10.1007/s13399-022-02527-9

Google Scholar