[1]
Yıldız, Gökhan, Ümit Ağbulut, and Ali Etem Gürel. "A review of stability, thermophysical properties and impact of using nanofluids on the performance of refrigeration systems." International Journal of Refrigeration 129 (2021): 342-364.
DOI: 10.1016/j.ijrefrig.2021.05.016
Google Scholar
[2]
Bhat, Mohd Waheed, et al. "Investigation on the thermophysical properties of Al2O3, Cu and SiC based Nano-refrigerants." Materials Today: Proceedings 5.14 (2018): 27820-27827.
DOI: 10.1016/j.matpr.2018.10.018
Google Scholar
[3]
Ogbonnaya, Mercy, et al. "Thermophysical Properties and Heat Transfer Characteristics of Nanorefrigerants: Some Existing Results and Areas for Further Researches." Key Engineering Materials 917 (2022): 207-227.
DOI: 10.4028/p-j63e4z
Google Scholar
[4]
NAC, Alawi OA Sidik, and A. S. Kherbeet. "Nanorefrigerant effects in heat transfer performance and energy consumption reduction: A review 2015 Int. Commun." Heat Mass Transf: 76-83.
DOI: 10.1016/j.icheatmasstransfer.2015.10.009
Google Scholar
[5]
Jaffri, Ali Jarrar, et al. "Investigation on thermo-physical properties of mixed nano-refrigerant with CuO based nanoparticles." Materials Today: Proceedings 5.14 (2018): 27795-27800.
DOI: 10.1016/j.matpr.2018.10.015
Google Scholar
[6]
Nair, V., Parekh, A. D., & Tailor, P. R. (2020). Experimental investigation of a vapour compression refrigeration system using R134a/Nano-oil mixture. International Journal of Refrigeration, 112, 21-36.
DOI: 10.1016/j.ijrefrig.2019.12.009
Google Scholar
[7]
Sabareesh, R. K., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems–An experimental investigation. international journal of refrigeration, 35(7), 1989-1996.
DOI: 10.1016/j.ijrefrig.2012.07.002
Google Scholar
[8]
Subramani, N., & Prakash, M. J. (2011). Experimental studies on a vapour compression system using nanorefrigerants. International Journal of Engineering, Science and Technology, 3(9), 95-102.
DOI: 10.4314/ijest.v3i9.8
Google Scholar
[9]
Akhayere, E., Adebayo, V., Adedeji, M., Abid, M., Kavaz, D., & Dagbasi, M. (2022). Investigating the effects of nanorefrigerants in a cascaded vapor compression refrigeration cycle. International Journal of Energy and Environmental Engineering, 1-12.
DOI: 10.1007/s40095-022-00537-x
Google Scholar
[10]
Joshi, Y., Zanwar, D., & Joshi, S. (2021). Performance investigation of vapor compression refrigeration system using R134a and R600a refrigerants and Al2O3 nanoparticle based suspension. Materials Today: Proceedings, 44, 1511-1519.
DOI: 10.1016/j.matpr.2020.11.732
Google Scholar
[11]
Soliman, A. M., Abdel Rahman, A. K., & Ookawara, S. (2019). Enhancement of vapor compression cycle performance using nanofluids: experimental results. Journal of Thermal Analysis and Calorimetry, 135, 1507-1520.
DOI: 10.1007/s10973-018-7623-y
Google Scholar
[12]
Senthilkumar, D. (2017). Influence of silicon carbide nanopowder in R134a refrigerant used in vapor compression refrigeration system. International Journal of Air-Conditioning and Refrigeration, 25(01), 1750007.
DOI: 10.1142/s2010132517500079
Google Scholar
[13]
Sendil Kumar, D., & Elansezhian, R. (2014). ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment. Frontiers of Mechanical Engineering, 9, 75-80.
DOI: 10.1007/s11465-014-0285-y
Google Scholar
[14]
Kumar, V. S., Baskaran, A., & Subaramanian, K. M. (2016). A performance study of Vapour compression refrigeration system using ZrO2 Nano particle with R134a and R152a. International Journal of Scientific and Research Publications, 6(12), 410-421.
Google Scholar
[15]
Shinde, H., Desai, N. S., Sabnis, N. V., & Gavali, P. Analyzing the Impact of using Sio2 and Graphene Oxide Nanoparticles Over the Performance of Vapor Compression Refrigeration System.
Google Scholar
[16]
Babarinde, T. O., Akinlabi, S. A., Madyira, D. M., & Ekundayo, F. M. (2020). Enhancing the energy efficiency of vapour compression refrigerator system using R600a with graphene nanolubricant. Energy Reports, 6, 1-10.
DOI: 10.1016/j.egyr.2019.11.031
Google Scholar
[17]
Salem, M. R. (2020). Performance enhancement of a vapor compression refrigeration system using R134a/MWCNT-oil mixture and liquid-suction heat exchanger equipped with twisted tape turbulator. International Journal of Refrigeration, 120, 357-369.
DOI: 10.1016/j.ijrefrig.2020.09.009
Google Scholar
[18]
Vasconcelos, A. A., Gómez, A. O. C., Bandarra Filho, E. P., & Parise, J. A. R. (2017). Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system. Applied Thermal Engineering, 111, 1487-1492.
DOI: 10.1016/j.applthermaleng.2016.06.126
Google Scholar
[19]
Xing, M., Wang, R., & Yu, J. (2014). Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. International journal of refrigeration, 40, 398-403.
DOI: 10.1016/j.ijrefrig.2013.12.004
Google Scholar
[20]
Pico, D. F. M., da Silva, L. R. R., Schneider, P. S., & Bandarra Filho, E. P. (2019). Performance evaluation of diamond nanolubricants applied to a refrigeration system. International Journal of Refrigeration, 100, 104-112.
DOI: 10.1016/j.ijrefrig.2018.12.009
Google Scholar
[21]
Yang, S., Cui, X., Zhou, Y., & Chen, C. (2020). Study on the effect of graphene nanosheets refrigerant oil on domestic refrigerator performance. International Journal of Refrigeration, 110, 187-195.
DOI: 10.1016/j.ijrefrig.2019.11.008
Google Scholar
[22]
Senthilkumar, A., Anderson, A., & Sekar, M. (2023). Performance analysis of R600a vapour compression refrigeration system using CuO/Al2O3 hybrid nanolubricants. Applied Nanoscience, 13(1), 899-915.
DOI: 10.1007/s13204-021-01936-y
Google Scholar
[23]
Mohan, K., Sundararaj, S., Kannan, K. G., & Kannan, A. (2020). Experimental analysis on refrigeration system using CNT, gold & HAUCL4 nano fluids. Materials Today: Proceedings, 33, 360-366.
DOI: 10.1016/j.matpr.2020.04.156
Google Scholar
[24]
Senthilkumar, A., Abhishek, P. V., Adithyan, M., & Arjun, A. (2021). Experimental investigation of CuO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Materials Today: Proceedings, 45, 6083-6086.
DOI: 10.1016/j.matpr.2020.10.178
Google Scholar
[25]
Ahmed, M. S., & Elsaid, A. M. (2019). Effect of hybrid and single nanofluids on the performance characteristics of chilled water air conditioning system. Applied Thermal Engineering, 163, 114398.
DOI: 10.1016/j.applthermaleng.2019.114398
Google Scholar
[26]
Mohamed, H. A., Camdali, U., Biyikoglu, A., & Aktas, M. (2022). The effects of CuO/CeO2 mixture nanoparticles on the performance of a vapor compression refrigeration system. Scientific Reports, 12(1), 8889.
DOI: 10.1038/s41598-022-12942-7
Google Scholar
[27]
Sundararaj, S., & Manivannan, R. (2020, November). Comparative energetic and exergetic analysis of vapour compression refrigeration system with Au, HAuCl4 and CNT nanoparticles. In AIP Conference Proceedings (Vol. 2270, No. 1). AIP Publishing
DOI: 10.1063/5.0019669
Google Scholar