Preparation and Characterization of DPCD Coating on Mg-Ca-Zn Magnesium Alloy by a Phosphating Treatment

Article Preview

Abstract:

A dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) coating is prepared to reduce the biodegradation rate of Mg–Ca–Zn alloy. The substrate is immersed into a solution with Ca(NO3)2·4 H2O 0.1 mol/L and Na3PO4 0.1 mol/L to obtain calcium phosphate coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. The biodegradable behavior is investigated by immersion tests. The results show that calcium phosphate coating consists of many flake particles and with immersion time increasing, the coating thickness increased and became more uniform and smooth. The coating can reduce the biodegradation rate of Mg alloys in Hank’s.

You might also be interested in these eBooks

Info:

Pages:

65-71

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Mao, G. Yuan, J. Niu, Y. Zong, W. Ding. In vitro degradation behavior and biocompatibility of Mg–Nd–Zn–Zr alloy by hydrofluoric acid treatment. Mater. Sci. Eng., C (2013) 33 (1): 242-250.

DOI: 10.1016/j.msec.2012.08.036

Google Scholar

[2] Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding. Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank's physiological solution. Mater. Sci. Eng., B (2012) 177 (5): 395-401.

DOI: 10.1016/j.mseb.2011.09.042

Google Scholar

[3] Q. Peng, Y. Huang, L. Zhou, N. Hort, K.U. Kainer. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials (2010) 31 (3): 398-403.

DOI: 10.1016/j.biomaterials.2009.09.065

Google Scholar

[4] H.S. Brar, J.P. Ball, I.S. Berglund, J.B. Allen, M.V. Manuel. A study of a biodegradable Mg-3Sc-3Y alloy and the effect of self-passivation on the in vitro degradation. Acta Biomater (2013) 9 (2): 5331-5340.

DOI: 10.1016/j.actbio.2012.08.004

Google Scholar

[5] F. Witte. The history of biodegradable magnesium implants: a review. Acta Biomater (2010) 6 (5): 1680-1692.

Google Scholar

[6] H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir. Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg–Ca–Zn alloy. Surf. Coat. Technol. (2013) 222: 79-89.

DOI: 10.1016/j.surfcoat.2013.02.007

Google Scholar

[7] A. Roy, S.S. Singh, M.K. Datta, B. Lee, J. Ohodnicki, P.N. Kumta. Novel sol–gel derived calcium phosphate coatings on Mg4Y alloy. Mater. Sci. Eng., B (2011) 176 (20): 1679-1689.

DOI: 10.1016/j.mseb.2011.08.007

Google Scholar

[8] A.F. Galio, S.V. Lamaka, M.L. Zheludkevich, L.F.P. Dick, I.L. Müller, M.G.S. Ferreira. Inhibitor-doped sol–gel coatings for corrosion protection of magnesium alloy AZ31. Surf. Coat. Technol. (2010) 204 (9-10): 1479-1486.

DOI: 10.1016/j.surfcoat.2009.09.067

Google Scholar

[9] R.F. Zhang, S.F. Zhang, N. Yang, L.J. Yao, F.X. He, Y.P. Zhou, et al. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys. J. Alloys Compd. (2012) 539: 249-255.

DOI: 10.1016/j.jallcom.2012.04.120

Google Scholar

[10] Y. Gu, S. Bandopadhyay, C. -f. Chen, C. Ning, Y. Guo. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications. Mater. Design (2013) 46: 66-75.

DOI: 10.1016/j.matdes.2012.09.056

Google Scholar

[11] X.B. Chen, N. Birbilis, T.B. Abbott. Effect of [Ca2+] and [PO43-] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D. Corros. Sci. (2012) 55: 226-232.

DOI: 10.1016/j.corsci.2011.10.022

Google Scholar

[12] X.B. Chen, N.T. Kirkland, H. Krebs, M.A. Thiriat, S. Virtanen, D. Nisbet, et al. In vitro corrosion survey of Mg-x-Ca and Mg-3Zn-y-Ca alloys with and without calcium phosphate conversion coatings. Corros. Eng. Sci. Techn. (2012) 47 (5): 365-373.

DOI: 10.1179/1743278212y.0000000019

Google Scholar

[13] M. Kumar, J. Xie, K. Chittur, C. Riley. Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution. Biomaterials (1999) 20 (15): 1389-1399.

DOI: 10.1016/s0142-9612(99)00043-5

Google Scholar

[14] I.A. Karampas, C.G. Kontoyannis. Characterization of calcium phosphates mixtures. Vib. Spectrosc. (2013) 64: 126-133.

DOI: 10.1016/j.vibspec.2012.11.003

Google Scholar

[15] Y. Song, D. Shan, R. Chen, F. Zhang, E. -H. Han. Formation mechanism of phosphate conversion film on Mg–8. 8Li alloy. Corros. Sci. (2009) 51 (1): 62-69.

DOI: 10.1016/j.corsci.2008.10.001

Google Scholar

[16] J. Yang, F. Cui, I.S. Lee. Surface modifications of magnesium alloys for biomedical applications. Ann. Biomed. Eng. (2011) 39 (7): 1857-1871.

DOI: 10.1007/s10439-011-0300-y

Google Scholar

[17] J. -x. Yang, Y. -p. Jiao, Q. -s. Yin, Y. Zhang, T. Zhang. Calcium phosphate coating on magnesium alloy by biomimetic method: Investigation of morphology, composition and formation process. Front. Mater. Sci. China (2008) 2 (2): 149-155.

DOI: 10.1007/s11706-008-0025-5

Google Scholar

[18] F. -z. Cui, J. -x. Yang, Y. -p. Jiao, Q. -s. Yin, Y. Zhang, I. -S. Lee. Calcium phosphate coating on magnesium alloy for modification of degradation behavior. Front. Mater. Sci. China (2008) 2 (2): 143-148.

DOI: 10.1007/s11706-008-0024-6

Google Scholar

[19] H. Tang, T.Z. Xin, Y. Luo, F.P. Wang. In vitro degradation of AZ31 magnesium alloy coated with hydroxyapatite by sol-gel method. Mater. Sci. Technol. (2013) 29 (5): 547-552.

DOI: 10.1179/1743284712y.0000000180

Google Scholar

[20] Y. Song, D. Shan, E. -H. Han. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg–3Zn alloy. Mater. Sci. Eng., C (2013) 33 (1): 78-84.

DOI: 10.1016/j.msec.2012.08.008

Google Scholar