Freeze-Thawed Hybridized Preparation with Biomimetic Self-Assembly for a Polyvinyl Alcohol/Collagen Hydrogel Created for Meniscus Tissue Engineering

Article Preview

Abstract:

Freeze-thawed hybridized preparation and the biomimetic self-assembly technique were used to fabricate hydrogel as tissue engineered scaffolds for meniscus tissue. Because of the advantages of both techniques, they were hybridized together as an interesting preparation for hydrogel. Three molecular weights (high, medium, and low) of PVA were prepared in a biomimetic solution before formation into hydrogel by freeze-thawing. The most suitable molecular weight PVA for hydrogel formation was chosen to be mixed with collagen. PVA, PVA/collagen, and collagen were prepared in biomimetic solutions and freeze-thawed into hydrogels. The hydrogels were analyzed and characterized by FTIR, DSC, and SEM. FTIR characterization indicated that high molecular weight PVA formed molecular interaction better than the other molecular weights, and PVA molecules formed molecular interaction with collagen molecules via –OH and C=O groups. DSC characterization showed that the hybridized preparation of freeze-thawing and biomimetic self-assembly kept the characteristics of PVA and collagen. SEM analysis demonstrated that the morphological formation of PVA/collagen was hybridized during freeze-thawing and collagen self-assembly. The morphological structure was organized into a porous network structure. The porous structure showed a rough wall that was formed by the hybridized structure of the crystal domain dispersed in amorphous and collagen self-assembly.

You might also be interested in these eBooks

Info:

Pages:

17-33

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Scotti, M.T. Hirschmann, P. Antinolfi, I. Martin, G.M. Peretti, Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater. 26(2013)150-70.

DOI: 10.22203/ecm.v026a11

Google Scholar

[2] B. Haddad, Konan S. Konan, Adesida A. Adesida, Khan W.S. Khan, A systematic review of tissue engineered meniscus and replacement strategies: preclinical models. Curr Stem Cell Res Ther. 3(2013)232-42.

DOI: 10.2174/1574888x11308030008

Google Scholar

[3] H. Pereira, A.M. Frias, J.M. Oliveira, J. Espregueira-Mendes, R.L. Reis, Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy. 12(2011)1706-19.

DOI: 10.1016/j.arthro.2011.08.283

Google Scholar

[4] J.J. Rongen, T.G. van Tienen, B. van Bochove, D.W. Grijpma, P. Buma, Biomaterials in search of a meniscus substitute. Biomaterials. 11(2014)3527-40.

DOI: 10.1016/j.biomaterials.2014.01.017

Google Scholar

[5] A. Gloria, R. De Santis, L. Ambrosio, Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech. 2(2010)57-67.

Google Scholar

[6] P. Buma, N.N. Ramrattan, T.G. van Tienen, R.P. Veth, Tissue engineering of the meniscus. Biomaterials. 9(2004)1523-32.

DOI: 10.1016/s0142-9612(03)00499-x

Google Scholar

[7] J.L. Holloway, A.M. Lowman, G.R. Palmese, Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 12(2010)4716-24.

DOI: 10.1016/j.actbio.2010.06.025

Google Scholar

[8] M. Kobayashi, A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed Mater Eng 4(2004)505-15.

Google Scholar

[9] A.S. Hoffman, Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 54(2002) 3-12.

Google Scholar

[10] N.A. Peppas, J.J. Sahlin, Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17(1996)1553–1561.

DOI: 10.1016/0142-9612(95)00307-x

Google Scholar

[11] R. Rizzi, C. Bearzi, A. Mauretti, S. Bernardini, S. Cannnata, C. Gargioli, Tissue engineering for skeletalmuscle regeneration. Muscles Ligaments Tendons J 2(2012)230-234.

Google Scholar

[12] C. Wiltsey, P. Kubinski, T. Christiani, K. Toomer, Sheehan J. Sheehan, A. Branda, J. Kadlowec, C. Iftode, J. Vernege, Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering. J Mater Sci Mater Med 4(2013).

DOI: 10.1007/s10856-013-4857-x

Google Scholar

[13] G. Perale, F. Rossi, E. Sundstrom, S. Bacchiega, M. Masi, G. Forloni, P. Veglianese, Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2(2011)336-345.

DOI: 10.1021/cn200030w

Google Scholar

[14] D. Macaya, M. Spector, Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 7(2012)1-22.

DOI: 10.1088/1748-6041/7/1/012001

Google Scholar

[15] P. Fatehi, H. Xiao, Effect of cationic PVA characteristics on fiber and paper properties at saturation level of polymer adsorption. Carbohydrate Polymers 79(2010)423–428.

DOI: 10.1016/j.carbpol.2009.08.029

Google Scholar

[16] T. Schuman, M. Wikstroem, M. Rigdahl, Coating of surface-modified papers with poly(vinyl alcohol). Surface and Coatings Technology 183(2004)96–105.

DOI: 10.1016/j.surfcoat.2003.09.059

Google Scholar

[17] W.S. Lyoo, W.S. Ha Structure and properties of microfibrillar poly(vinyl alcohol) fibres prepared by saponification under shearing force of poly(vinyl pivalate). Polymer 37(1996) 3121–3129.

DOI: 10.1016/0032-3861(96)89414-6

Google Scholar

[18] Y. Wang, Y.L. Hsieh, Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. Journal of Membrane Science 309(2008)73–81.

DOI: 10.1016/j.memsci.2007.10.008

Google Scholar

[19] N.A. Peppas, J.E. Scott, Controlled release from poly (vinyl alcohol ) gels prepared by freezing-thawing processes. Journal of Controlled Release 18(1992) 95-100.

DOI: 10.1016/0168-3659(92)90178-t

Google Scholar

[20] C.M. Hassan, J.E. Stewart, N.A. Peppas, Diffusional characteristics of freeze/thawed poly(vinyl alcohol) hydrogels: Applications to protein controlled release from multilaminate devices. European Journal of Pharmaceutics and Biopharmaceutics 49(2000).

DOI: 10.1016/s0939-6411(99)00056-9

Google Scholar

[21] S. Jiang, S. Liu, W. Feng PVA hydrogel properties for biomedical application . Journal of the Mechanical Behavior of Biomedical Materials 4(2011)1228–1233.

DOI: 10.1016/j.jmbbm.2011.04.005

Google Scholar

[22] J.L. Holloway, A.M. Lowman, G.R. Palmese, Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions. Acta Biomaterials 9(2013)5013-5021.

DOI: 10.1016/j.actbio.2012.09.018

Google Scholar

[23] W. Song, D.C. Markel, X. Jin, T. Shi, W. Ren Poly(vinylalcohol)/collagen/hydroxyapatite hydrogel: properties and in vitro cellular response. J Biomed Mater Res A 100(2012)3071-30719.

DOI: 10.1002/jbm.a.34240

Google Scholar

[24] S. Lamponi, G. Leone, M. Consumi, G. Greco, A. Magnani, In vitro biocompatibility of new PVA-based hydrogels as vitreous body substitutes. J Biomater Sci Polym Ed 23(2012)555-575.

DOI: 10.1163/092050611x554499

Google Scholar

[25] C. Hassan, N.A. Peppas, Biopolymers PVA Hydrogels, Anionic PolymerisationNanocomposites. Advances in Polymer Science 153(2000)37-65.

Google Scholar

[26] K. Urayama,S. Ogasawara, T. Takigawa, Pure shear deformation of physical and chemical gels of poly(vinyl alcohol). Polymer 47(2006)6868-6873.

DOI: 10.1016/j.polymer.2006.07.021

Google Scholar

[27] G.B. McKenna, F. Horkay, Effect of crosslinks on the thermodynamics of poly(vinyl alcohol) hydrogels. Polymer 35(1994)5737-5742.

DOI: 10.1016/s0032-3861(05)80049-7

Google Scholar

[28] D.A. La Van, J.N. Cha, Approaches for biological and biomimetic energy conversion. PNAS 103(2006) 5251–5255.

Google Scholar

[29] A. Menges, Biomimetic design processes in architecture: morphogenetic and evolutionary computational design. Bioinspir. Biomim 7(2012) 1-10.

DOI: 10.1088/1748-3182/7/1/015003

Google Scholar

[30] M.E. Launey, E. Munch, D.H. Alsem, E. Saiz A.P. Tomsia, R.O. Ritchie, A novel biomimetic approach to the design of high-performance ceramic–metal composites. J. R. Soc. Interface 7 (2010)741–753.

DOI: 10.1098/rsif.2009.0331

Google Scholar

[31] E.H. Lim, J.P. Sardinha, S. Myers, Nanotechnology Biomimetic Cartilage Regenerative Scaffolds. Arch Plast Surg 3(2014)231-240.

DOI: 10.5999/aps.2014.41.3.231

Google Scholar

[32] E. Ko, S.W. Cho, Biomimetic Polymer Scaffolds to Promote Stem Cell-Mediated Osteogenesis. Int J Stem Cells. 2(2013)87-91.

DOI: 10.15283/ijsc.2013.6.2.87

Google Scholar

[33] J. Ma, J. Wang, X. Ai, S. Zhang, Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates. Biotechnol Adv 32(2014)744-760.

DOI: 10.1016/j.biotechadv.2013.10.014

Google Scholar

[34] A. Diaz Lantada, B. Pareja Sanchez, C. Gomez Murillo, J. Urbieta Scotillo, Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Rev Med Devices 10(2013)629-48.

DOI: 10.1586/17434440.2013.827506

Google Scholar

[35] P.X. Ma Biomimetic Materials for Tissue Engineer. Adv Drug Deliv Rev 60(2008)184-198.

Google Scholar

[36] S.C. Owen, M.S. Schoichet, Design of three-dimensional biomimetic scaffolds. Journal of Biomedical Materials Research A 94(2010)1321-1331.

Google Scholar

[37] J. Pattersona, M.M. Martina, J.A. Hubbell, Biomimetic materials in tissue engineering. Materials Today 13(2010)14–22.

Google Scholar

[38] T.G. Kim, H. Shin, D.W. Lim Biomimetic Scaffolds for Tissue Engineering . Advanced Functional Materials 22(2012)2446-2468.

DOI: 10.1002/adfm.201103083

Google Scholar

[39] J. Zhu, L.J. Kaufman Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophys J 106(2014): 1822-31.

DOI: 10.1016/j.bpj.2014.03.011

Google Scholar

[40] W. Li, P. Zhao, C. Lin, X. Wen, E. Katsanevakis, D. Gero, O. Felix, Y. Liu Natural polyelectrolyte self-assembled multilayers based on collagen and alginate: stability and cytocompatibility. Biomacromolecules 14(2013): 2647-56.

DOI: 10.1021/bm4005063

Google Scholar

[41] K. Zhang, J.A. Li, K. Deng, T. Liu, J.Y. Chen,N. Huang, The endothelialization and hemocompatibility of the functional multilayer on titanium surface constructed with type IV collagen and heparin. Colloids Surf B Biointerfaces 108(2013)295-304.

DOI: 10.1016/j.colsurfb.2012.12.053

Google Scholar

[42] W.J. Chung, J.W. Oh, K. Kwak, B.Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.W. Lee, Biomimetic self-templating supramolecular structures. Nature 2011; 478(7369): 364-8.

DOI: 10.1038/nature10513

Google Scholar

[43] F. Jiang, H. Hoerber, J. Howard, Müller D.J. Mueller, Assembly of collagen into microribbons: effects of pH and electrolytes. J Struct Biol 2004; 148(3): 268-78.

DOI: 10.1016/j.jsb.2004.07.001

Google Scholar

[44] D.A. Cisneros, C. Hung, C.M. Franz, D.J. Mueller, Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struct Biol 154(2006)232-45.

DOI: 10.1016/j.jsb.2006.02.006

Google Scholar

[45] P. Kittiphattanabawon, S. Benjakul, W. Vissessanguan, H. Kishimura, F. Shahidi, Isolation and characterization of collagen from the skin of brownbanded bamboo shark (Chiloscyllium punctatum). Food Chemistry 199(2010)1519-1526.

DOI: 10.1016/j.foodchem.2009.09.037

Google Scholar

[46] J.H. Bradt, M. Mertig,A. Teresiak, W. Pompe, Biomimetic Mineralization of Collagen by CombinedFibril Assembly and Calcium Phosphate Formation. Chem Mater 11(1999)2694-270.

DOI: 10.1021/cm991002p

Google Scholar

[47] M.J. D Nugent, C.L. Higginbotham, Preparation of a novel freeze thawed poly(vinyl alcohol) composite hydrogel for drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics. 6: 377-386.

DOI: 10.1016/j.ejpb.2007.02.014

Google Scholar

[48] A.K. Pramanick, S. Gupta, T. Mishra, A. Sinha, Topographical heterogeneity in transparent PVA hydrogels studied by AFM. Materials Science and Engineering: C 2012; 32: 222-227.

DOI: 10.1016/j.msec.2011.10.022

Google Scholar

[49] U. Fumio, Y. Hiroshi, N. Kumiko, N. Sachihiko, S. Kenji, M. Yasunori, Swelling and mechanical properties of poly(vinyl alcohol) hydrogels. International Journal of Pharmaceutics 58(1990)135-142.

DOI: 10.1016/0378-5173(90)90251-x

Google Scholar

[50] S.W. Tsai, R.L. Liu, F.Y. Hsu, C.C. Chen, A study of the influence of polysaccharides on collagen self-assembly: Nanostructure and kinetics. Biopolymers 83(2006)381–388.

DOI: 10.1002/bip.20568

Google Scholar

[51] S. Hua, H. Ma, X. Li, H. Yang, A. Wang, pH-sensitive sodium alginate/poly(vinyl alcohol)hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. International Journal of Biological Macromolecules 46(2010).

DOI: 10.1016/j.ijbiomac.2010.03.004

Google Scholar

[52] S. Sigurgisladottir , H. Ingvarsdottir , Torrissen O.J. Torrissen , M. Cardinal , H. Hafsteinsson, Effect of freezing/thawing on the microstructure and the texture of smoked Atlantic salmon (Salmo salar). Food Research International 33(2000).

DOI: 10.1016/s0963-9969(00)00105-8

Google Scholar

[53] P. Sriket, S. Benjakul, W. Visessanguan, K. Kijroongrojana, Comparative studies on the effect the freeze-thawing process on the physicochemical properties and microstructure of black tiger shrimp(Penaeus monodon) and white shrimp (Penaeus vanname) muscle. Food Chemistry 104(2007).

DOI: 10.1016/j.foodchem.2006.11.004

Google Scholar

[54] C.M. Hassan, N.A. Peppas, Structure and morphology of Freeze/Thawed PVA hydrogels. Macromolecules 33(2000)2472-2479.

DOI: 10.1021/ma9907587

Google Scholar

[55] E.M. Abdelrazek, I.S. Elashmawi, S. Labeeb, Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Physica B 405(2010)2021–(2027).

DOI: 10.1016/j.physb.2010.01.095

Google Scholar

[56] W. Kunz, Specific ion effects in colloidal and biological systems Current Opinion in Colloid & Interface Science 2010; 15(2010)34–39.

DOI: 10.1016/j.cocis.2009.11.008

Google Scholar

[57] I.E. Gouve, W.A. S Judice, M.H. S Cerazi, M.A. Juliano, T. Juhz, Z. Szeltner,L. Polgr, L. Juliano, Kosmotropic salt activation and substrate specificity of poliovirus protease 3C. Biochemistry 45(2006)12083–12089.

DOI: 10.1021/bi060793n

Google Scholar

[58] C. M Hassan, Peppas N.A. Peppas, Structure and morphology of Freeze/Thawed PVA hydrogels. Macromolecules 33(2000)2472-2479.

DOI: 10.1021/ma9907587

Google Scholar

[59] Y. Zhang, Cremer P.S. Cremer, Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology 10(2006)658–663.

DOI: 10.1016/j.cbpa.2006.09.020

Google Scholar

[60] J. Zhu, L.J. Kaufman, Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophysical Journal 106(2004)1822-1831.

DOI: 10.1016/j.bpj.2014.03.011

Google Scholar