[1]
C. Scotti, M.T. Hirschmann, P. Antinolfi, I. Martin, G.M. Peretti, Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater. 26(2013)150-70.
DOI: 10.22203/ecm.v026a11
Google Scholar
[2]
B. Haddad, Konan S. Konan, Adesida A. Adesida, Khan W.S. Khan, A systematic review of tissue engineered meniscus and replacement strategies: preclinical models. Curr Stem Cell Res Ther. 3(2013)232-42.
DOI: 10.2174/1574888x11308030008
Google Scholar
[3]
H. Pereira, A.M. Frias, J.M. Oliveira, J. Espregueira-Mendes, R.L. Reis, Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy. 12(2011)1706-19.
DOI: 10.1016/j.arthro.2011.08.283
Google Scholar
[4]
J.J. Rongen, T.G. van Tienen, B. van Bochove, D.W. Grijpma, P. Buma, Biomaterials in search of a meniscus substitute. Biomaterials. 11(2014)3527-40.
DOI: 10.1016/j.biomaterials.2014.01.017
Google Scholar
[5]
A. Gloria, R. De Santis, L. Ambrosio, Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech. 2(2010)57-67.
Google Scholar
[6]
P. Buma, N.N. Ramrattan, T.G. van Tienen, R.P. Veth, Tissue engineering of the meniscus. Biomaterials. 9(2004)1523-32.
DOI: 10.1016/s0142-9612(03)00499-x
Google Scholar
[7]
J.L. Holloway, A.M. Lowman, G.R. Palmese, Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 12(2010)4716-24.
DOI: 10.1016/j.actbio.2010.06.025
Google Scholar
[8]
M. Kobayashi, A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed Mater Eng 4(2004)505-15.
Google Scholar
[9]
A.S. Hoffman, Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 54(2002) 3-12.
Google Scholar
[10]
N.A. Peppas, J.J. Sahlin, Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17(1996)1553–1561.
DOI: 10.1016/0142-9612(95)00307-x
Google Scholar
[11]
R. Rizzi, C. Bearzi, A. Mauretti, S. Bernardini, S. Cannnata, C. Gargioli, Tissue engineering for skeletalmuscle regeneration. Muscles Ligaments Tendons J 2(2012)230-234.
Google Scholar
[12]
C. Wiltsey, P. Kubinski, T. Christiani, K. Toomer, Sheehan J. Sheehan, A. Branda, J. Kadlowec, C. Iftode, J. Vernege, Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering. J Mater Sci Mater Med 4(2013).
DOI: 10.1007/s10856-013-4857-x
Google Scholar
[13]
G. Perale, F. Rossi, E. Sundstrom, S. Bacchiega, M. Masi, G. Forloni, P. Veglianese, Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2(2011)336-345.
DOI: 10.1021/cn200030w
Google Scholar
[14]
D. Macaya, M. Spector, Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 7(2012)1-22.
DOI: 10.1088/1748-6041/7/1/012001
Google Scholar
[15]
P. Fatehi, H. Xiao, Effect of cationic PVA characteristics on fiber and paper properties at saturation level of polymer adsorption. Carbohydrate Polymers 79(2010)423–428.
DOI: 10.1016/j.carbpol.2009.08.029
Google Scholar
[16]
T. Schuman, M. Wikstroem, M. Rigdahl, Coating of surface-modified papers with poly(vinyl alcohol). Surface and Coatings Technology 183(2004)96–105.
DOI: 10.1016/j.surfcoat.2003.09.059
Google Scholar
[17]
W.S. Lyoo, W.S. Ha Structure and properties of microfibrillar poly(vinyl alcohol) fibres prepared by saponification under shearing force of poly(vinyl pivalate). Polymer 37(1996) 3121–3129.
DOI: 10.1016/0032-3861(96)89414-6
Google Scholar
[18]
Y. Wang, Y.L. Hsieh, Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. Journal of Membrane Science 309(2008)73–81.
DOI: 10.1016/j.memsci.2007.10.008
Google Scholar
[19]
N.A. Peppas, J.E. Scott, Controlled release from poly (vinyl alcohol ) gels prepared by freezing-thawing processes. Journal of Controlled Release 18(1992) 95-100.
DOI: 10.1016/0168-3659(92)90178-t
Google Scholar
[20]
C.M. Hassan, J.E. Stewart, N.A. Peppas, Diffusional characteristics of freeze/thawed poly(vinyl alcohol) hydrogels: Applications to protein controlled release from multilaminate devices. European Journal of Pharmaceutics and Biopharmaceutics 49(2000).
DOI: 10.1016/s0939-6411(99)00056-9
Google Scholar
[21]
S. Jiang, S. Liu, W. Feng PVA hydrogel properties for biomedical application . Journal of the Mechanical Behavior of Biomedical Materials 4(2011)1228–1233.
DOI: 10.1016/j.jmbbm.2011.04.005
Google Scholar
[22]
J.L. Holloway, A.M. Lowman, G.R. Palmese, Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions. Acta Biomaterials 9(2013)5013-5021.
DOI: 10.1016/j.actbio.2012.09.018
Google Scholar
[23]
W. Song, D.C. Markel, X. Jin, T. Shi, W. Ren Poly(vinylalcohol)/collagen/hydroxyapatite hydrogel: properties and in vitro cellular response. J Biomed Mater Res A 100(2012)3071-30719.
DOI: 10.1002/jbm.a.34240
Google Scholar
[24]
S. Lamponi, G. Leone, M. Consumi, G. Greco, A. Magnani, In vitro biocompatibility of new PVA-based hydrogels as vitreous body substitutes. J Biomater Sci Polym Ed 23(2012)555-575.
DOI: 10.1163/092050611x554499
Google Scholar
[25]
C. Hassan, N.A. Peppas, Biopolymers PVA Hydrogels, Anionic PolymerisationNanocomposites. Advances in Polymer Science 153(2000)37-65.
Google Scholar
[26]
K. Urayama,S. Ogasawara, T. Takigawa, Pure shear deformation of physical and chemical gels of poly(vinyl alcohol). Polymer 47(2006)6868-6873.
DOI: 10.1016/j.polymer.2006.07.021
Google Scholar
[27]
G.B. McKenna, F. Horkay, Effect of crosslinks on the thermodynamics of poly(vinyl alcohol) hydrogels. Polymer 35(1994)5737-5742.
DOI: 10.1016/s0032-3861(05)80049-7
Google Scholar
[28]
D.A. La Van, J.N. Cha, Approaches for biological and biomimetic energy conversion. PNAS 103(2006) 5251–5255.
Google Scholar
[29]
A. Menges, Biomimetic design processes in architecture: morphogenetic and evolutionary computational design. Bioinspir. Biomim 7(2012) 1-10.
DOI: 10.1088/1748-3182/7/1/015003
Google Scholar
[30]
M.E. Launey, E. Munch, D.H. Alsem, E. Saiz A.P. Tomsia, R.O. Ritchie, A novel biomimetic approach to the design of high-performance ceramic–metal composites. J. R. Soc. Interface 7 (2010)741–753.
DOI: 10.1098/rsif.2009.0331
Google Scholar
[31]
E.H. Lim, J.P. Sardinha, S. Myers, Nanotechnology Biomimetic Cartilage Regenerative Scaffolds. Arch Plast Surg 3(2014)231-240.
DOI: 10.5999/aps.2014.41.3.231
Google Scholar
[32]
E. Ko, S.W. Cho, Biomimetic Polymer Scaffolds to Promote Stem Cell-Mediated Osteogenesis. Int J Stem Cells. 2(2013)87-91.
DOI: 10.15283/ijsc.2013.6.2.87
Google Scholar
[33]
J. Ma, J. Wang, X. Ai, S. Zhang, Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates. Biotechnol Adv 32(2014)744-760.
DOI: 10.1016/j.biotechadv.2013.10.014
Google Scholar
[34]
A. Diaz Lantada, B. Pareja Sanchez, C. Gomez Murillo, J. Urbieta Scotillo, Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Rev Med Devices 10(2013)629-48.
DOI: 10.1586/17434440.2013.827506
Google Scholar
[35]
P.X. Ma Biomimetic Materials for Tissue Engineer. Adv Drug Deliv Rev 60(2008)184-198.
Google Scholar
[36]
S.C. Owen, M.S. Schoichet, Design of three-dimensional biomimetic scaffolds. Journal of Biomedical Materials Research A 94(2010)1321-1331.
Google Scholar
[37]
J. Pattersona, M.M. Martina, J.A. Hubbell, Biomimetic materials in tissue engineering. Materials Today 13(2010)14–22.
Google Scholar
[38]
T.G. Kim, H. Shin, D.W. Lim Biomimetic Scaffolds for Tissue Engineering . Advanced Functional Materials 22(2012)2446-2468.
DOI: 10.1002/adfm.201103083
Google Scholar
[39]
J. Zhu, L.J. Kaufman Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophys J 106(2014): 1822-31.
DOI: 10.1016/j.bpj.2014.03.011
Google Scholar
[40]
W. Li, P. Zhao, C. Lin, X. Wen, E. Katsanevakis, D. Gero, O. Felix, Y. Liu Natural polyelectrolyte self-assembled multilayers based on collagen and alginate: stability and cytocompatibility. Biomacromolecules 14(2013): 2647-56.
DOI: 10.1021/bm4005063
Google Scholar
[41]
K. Zhang, J.A. Li, K. Deng, T. Liu, J.Y. Chen,N. Huang, The endothelialization and hemocompatibility of the functional multilayer on titanium surface constructed with type IV collagen and heparin. Colloids Surf B Biointerfaces 108(2013)295-304.
DOI: 10.1016/j.colsurfb.2012.12.053
Google Scholar
[42]
W.J. Chung, J.W. Oh, K. Kwak, B.Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.W. Lee, Biomimetic self-templating supramolecular structures. Nature 2011; 478(7369): 364-8.
DOI: 10.1038/nature10513
Google Scholar
[43]
F. Jiang, H. Hoerber, J. Howard, Müller D.J. Mueller, Assembly of collagen into microribbons: effects of pH and electrolytes. J Struct Biol 2004; 148(3): 268-78.
DOI: 10.1016/j.jsb.2004.07.001
Google Scholar
[44]
D.A. Cisneros, C. Hung, C.M. Franz, D.J. Mueller, Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struct Biol 154(2006)232-45.
DOI: 10.1016/j.jsb.2006.02.006
Google Scholar
[45]
P. Kittiphattanabawon, S. Benjakul, W. Vissessanguan, H. Kishimura, F. Shahidi, Isolation and characterization of collagen from the skin of brownbanded bamboo shark (Chiloscyllium punctatum). Food Chemistry 199(2010)1519-1526.
DOI: 10.1016/j.foodchem.2009.09.037
Google Scholar
[46]
J.H. Bradt, M. Mertig,A. Teresiak, W. Pompe, Biomimetic Mineralization of Collagen by CombinedFibril Assembly and Calcium Phosphate Formation. Chem Mater 11(1999)2694-270.
DOI: 10.1021/cm991002p
Google Scholar
[47]
M.J. D Nugent, C.L. Higginbotham, Preparation of a novel freeze thawed poly(vinyl alcohol) composite hydrogel for drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics. 6: 377-386.
DOI: 10.1016/j.ejpb.2007.02.014
Google Scholar
[48]
A.K. Pramanick, S. Gupta, T. Mishra, A. Sinha, Topographical heterogeneity in transparent PVA hydrogels studied by AFM. Materials Science and Engineering: C 2012; 32: 222-227.
DOI: 10.1016/j.msec.2011.10.022
Google Scholar
[49]
U. Fumio, Y. Hiroshi, N. Kumiko, N. Sachihiko, S. Kenji, M. Yasunori, Swelling and mechanical properties of poly(vinyl alcohol) hydrogels. International Journal of Pharmaceutics 58(1990)135-142.
DOI: 10.1016/0378-5173(90)90251-x
Google Scholar
[50]
S.W. Tsai, R.L. Liu, F.Y. Hsu, C.C. Chen, A study of the influence of polysaccharides on collagen self-assembly: Nanostructure and kinetics. Biopolymers 83(2006)381–388.
DOI: 10.1002/bip.20568
Google Scholar
[51]
S. Hua, H. Ma, X. Li, H. Yang, A. Wang, pH-sensitive sodium alginate/poly(vinyl alcohol)hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. International Journal of Biological Macromolecules 46(2010).
DOI: 10.1016/j.ijbiomac.2010.03.004
Google Scholar
[52]
S. Sigurgisladottir , H. Ingvarsdottir , Torrissen O.J. Torrissen , M. Cardinal , H. Hafsteinsson, Effect of freezing/thawing on the microstructure and the texture of smoked Atlantic salmon (Salmo salar). Food Research International 33(2000).
DOI: 10.1016/s0963-9969(00)00105-8
Google Scholar
[53]
P. Sriket, S. Benjakul, W. Visessanguan, K. Kijroongrojana, Comparative studies on the effect the freeze-thawing process on the physicochemical properties and microstructure of black tiger shrimp(Penaeus monodon) and white shrimp (Penaeus vanname) muscle. Food Chemistry 104(2007).
DOI: 10.1016/j.foodchem.2006.11.004
Google Scholar
[54]
C.M. Hassan, N.A. Peppas, Structure and morphology of Freeze/Thawed PVA hydrogels. Macromolecules 33(2000)2472-2479.
DOI: 10.1021/ma9907587
Google Scholar
[55]
E.M. Abdelrazek, I.S. Elashmawi, S. Labeeb, Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Physica B 405(2010)2021–(2027).
DOI: 10.1016/j.physb.2010.01.095
Google Scholar
[56]
W. Kunz, Specific ion effects in colloidal and biological systems Current Opinion in Colloid & Interface Science 2010; 15(2010)34–39.
DOI: 10.1016/j.cocis.2009.11.008
Google Scholar
[57]
I.E. Gouve, W.A. S Judice, M.H. S Cerazi, M.A. Juliano, T. Juhz, Z. Szeltner,L. Polgr, L. Juliano, Kosmotropic salt activation and substrate specificity of poliovirus protease 3C. Biochemistry 45(2006)12083–12089.
DOI: 10.1021/bi060793n
Google Scholar
[58]
C. M Hassan, Peppas N.A. Peppas, Structure and morphology of Freeze/Thawed PVA hydrogels. Macromolecules 33(2000)2472-2479.
DOI: 10.1021/ma9907587
Google Scholar
[59]
Y. Zhang, Cremer P.S. Cremer, Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology 10(2006)658–663.
DOI: 10.1016/j.cbpa.2006.09.020
Google Scholar
[60]
J. Zhu, L.J. Kaufman, Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophysical Journal 106(2004)1822-1831.
DOI: 10.1016/j.bpj.2014.03.011
Google Scholar