[1]
http: /classics. mit. edu/Aristotle/history_anim. html.
Google Scholar
[2]
B. Bhushan, Biomimetics: lessons from nature-an overview, Trans A Math Phys Eng Sci, 367, (2009) 1445-86.
Google Scholar
[3]
S.N. Gorb, Origin and pathway of the epidermal secretion in the damselfly head-arresting system (Insecta: Odonata), J Insect Physiol, 44 (1998) 1053-1061.
DOI: 10.1016/s0022-1910(98)00068-7
Google Scholar
[4]
E. Bauchhenss, Die Pulvillen von Calliphora erythrocephala (Diptera, Brachycera) als Adhäsionsorgane, Zoomorphologie, 93 (1979) 99–123.
DOI: 10.1007/bf00994125
Google Scholar
[5]
G. Walker, A.B. Yulf, J. Ratcliffe, The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae), Journal of Zoology, 205 (1985) 297–307.
DOI: 10.1111/j.1469-7998.1985.tb03536.x
Google Scholar
[6]
N.E. Stork, Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces, J Exp Biol, 88 (1980) 91–107.
DOI: 10.1242/jeb.88.1.91
Google Scholar
[7]
A. B. Kesel, A. Martin, and T. Seidl, Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata, J Exp Biol, 206 (2003) 2733 -2738.
DOI: 10.1242/jeb.00478
Google Scholar
[8]
A.P. Russell, T.E. Higham, A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system, Proc Biol Sci, 276 (2009) 3705-3709.
DOI: 10.1098/rspb.2009.0946
Google Scholar
[9]
K. Autumn, A.M. Peattie, Mechanisms of adhesion in geckos, Integr Comp Biol, 42 (2002) 1081-90.
Google Scholar
[10]
K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair, Nature, 405 (2000) 681-685.
DOI: 10.1038/35015073
Google Scholar
[11]
G.C. Hill, D.R. Soto, A.M. Peattie, R.J. Full, T.W. Kenny, Orientation angle and the adhesion of single gecko setae. J R Soc Interface, 8 (2011) 926-933.
DOI: 10.1098/rsif.2010.0720
Google Scholar
[12]
C. Hu and P. A. Greaney, Role of seta angle and flexibility in the gecko adhesion mechanism. Journal of Applied Physics, 116 (2014) 074302.
DOI: 10.1063/1.4892628
Google Scholar
[13]
K. Autumn, A. Dittmore, D Santos, M. Spenko, M. Cutkosky, J Exp Biol, 209 (2006), 3569-3579.
DOI: 10.1242/jeb.02486
Google Scholar
[14]
M. Zhou, N. Pesika, H. Zeng , Y. Tian, J. Israelachvili, Friction, 1 (2013) 114–129.
Google Scholar
[15]
S. Hu, S. Lopez, P.H. Niewiarowski, Z. Xia Surface wettability plays a significant role in gecko adhesion underwater, J R Soc Interface, 76 (2012) 2781-2790.
Google Scholar
[16]
W.R. Hansen, and K. Autumn, Surface wettability plays a significant role in gecko adhesion underwater, Proc Natl Acad Sci U S A, 102 (2005) 385-389.
Google Scholar
[17]
K. Autumn, N. Gravish, Gecko adhesion: evolutionary nanotechnology, Philos, A. Trans, Math. Phys. Eng. Sci, 366 (2008) 1575-1590.
DOI: 10.1098/rsta.2007.2173
Google Scholar
[18]
K. Autumn, C. Majidi, R.E. Groff, A. Dittmore, R. Fearing R, Effective elastic modulus of isolated gecko setal arrays. J Exp Biol, 209 (2006) 3558-3568.
DOI: 10.1242/jeb.02469
Google Scholar
[19]
K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full Proc Natl Acad Sci U S A, 2002, 99, 12252-12256.
DOI: 10.1073/pnas.192252799
Google Scholar
[20]
A.Y. Stark, T.W. Sullivan, P.H. Niewiarowski, The effect of surface water and wetting on gecko adhesion, J Exp Biol, 215 (2012) 3080-3086.
DOI: 10.1242/jeb.070912
Google Scholar
[21]
J.B. Puthoff, M.S. Prowse, M. Wilkinson, K. Autumn, Changes in materials properties explain the effects of humidity on gecko adhesion, J Exp Biol, 213 (2010) 3699–3704.
DOI: 10.1242/jeb.047654
Google Scholar
[22]
E. Arzt E, S. Gorb S, R. Spolenak, From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA, 100 (2003) 10603–10606.
DOI: 10.1073/pnas.1534701100
Google Scholar
[23]
A. Peressadko, S.N. Gorb, When less is more: experimental evidence for tenacity enhancement by division of contact area, J Adhes, 80 (2004) 247–261.
DOI: 10.1080/00218460490430199
Google Scholar
[24]
A.M. Peattie, R.J. Full, Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives, P Natl Acad Sci USA, 104 (2007) 18595–18600.
DOI: 10.1073/pnas.0707591104
Google Scholar
[25]
M. Sitti and R.S. Fearing, Synthetic gecko foot-hair micro/nano-structures as dry adhesives, J Adhesion Science & Technology, 18 (2003) 1055-1074.
DOI: 10.1163/156856103322113788
Google Scholar
[26]
A.K. Geim, S.V. Dubonos , I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, and S.Y. Shapoval, Microfabricated adhesive mimicking gecko foot-hair, Nature Materials 2 (2003) 461 – 463.
DOI: 10.1038/nmat917
Google Scholar
[27]
Gorb S., Varenberg M., Peressadko A., Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure, J R Soc Interface, 4 (2007) 271-275.
DOI: 10.1098/rsif.2006.0164
Google Scholar
[28]
J. Davies, S. Haq, T. Hawke, J.P. Sargent J.P., A practical approach to the development of a synthetic Gecko tape, International Journal of Adhesion & Adhesives, 29 (2009) 380–390.
DOI: 10.1016/j.ijadhadh.2008.07.009
Google Scholar
[29]
E. Cheung and M. Sitti, Adhesion of Biologically Inspired Polymer Microfibers on Soft Surfaces, Langmuir, 225 (2009) 6613–6616.
DOI: 10.1021/la900997p
Google Scholar
[30]
M. Jin, X. Feng, T. Sun, J. Zhai, T. Li, L. Jiang, Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Adv Mat, 17 (2005) 1977–(1981).
DOI: 10.1002/adma.200401726
Google Scholar
[31]
J. Lee and R.S. Fearing Contact Self-Cleaning of Synthetic Gecko Adhesive from Polymer Microfibers. Langmuir, 2008, 24, 10587–10591.
DOI: 10.1021/la8021485
Google Scholar
[32]
J. Lee, B. Bush, R. Maboudian, R.S. Fearing, Gecko-Inspired Combined Lamellar and Nanofibrillar Array for Adhesion on Nonplanar Surface, Langmuir, 25 (2009) 12449–12453.
DOI: 10.1021/la9029672
Google Scholar
[33]
M. Sitti, R.S. Fearing R.S., Gecko-Inspired Combined Lamellar and Nanofibrillar Array for Adhesion on Nonplanar Surface. In Proceedings of the 2002 2nd IEE Conference on Nanotechnology, Washington, 2002, 137–140.
DOI: 10.1021/la9029672
Google Scholar
[34]
B. Yurdumakan, N.R. Raravikar, P.M. Ajayan, A. Dhinojwala, Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun (Camb), 30 (2005) 3799-3801.
DOI: 10.1039/b506047h
Google Scholar
[35]
L. Qu, L. Dai, Gecko-Foot-Mimetic Aligned Single-Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties, Adv Mater, 19 (2007) 3844–3849.
DOI: 10.1002/adma.200700023
Google Scholar
[36]
D. Ruffatto, A. Parness, M. Spenko, Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive. J. R. Soc. Interface, 11, 20131089. http: /dx. doi. org/10. 1098/rsif. 2013. 1089.
DOI: 10.1098/rsif.2013.1089
Google Scholar
[37]
https: /geckskin. umass. edu.
Google Scholar
[38]
E.W. Hawkes, E.V. Eason, D.L. Christensen, M.R. Cutkosky, Human climbing with efficiently scaled gecko-inspired dry adhesives. J R Soc Interface, 12 (2005) 1-10.
DOI: 10.1098/rsif.2014.0675
Google Scholar
[39]
https: /www. rt. com/news/312564-nasa-gecko-space-robot.
Google Scholar
[40]
J. Subramanean and V.R. Reddy, Monitor lizards and geckos used in traditional medicine face extinction and need protection. Current Science, 102 (2012) 1248-1249.
Google Scholar