Gecko Feet as a Bio Prototype for the Use of Dry Adhesion in Engineering Decisions

Article Preview

Abstract:

The focus of this review is to outline the remarkable ability of the gecko to climb surfaces vertically, at tremendous speed (over 1 m/s) using van der Waals forces (one of nature’s amazing “sticking and unsticking” directional dry adhesion design) as well as contact splitting mechanism. Further, the elasticity of the hairs conforming to the topology of the surface and hence contributing to an increased adhesion force is discussed, apart from the applications of gecko feet bio-inspired solutions. Such applications are in areas as diverse as, and not restricted to, climbing vertically and horizontally on glass surfaces; fitting televisions and computers on the walls; in robots for the inspection and maintenance of installations in space stations and self-cleaning surfaces. By this review, we hope to inspire and motivate the current generation of engineers to study, mimic and abstract the fundamental hierarchical structures as well as the incredible dry adhesion principles (as closely as is possible) objects of nature. This approach will help in improving upon the existing methods to produce gecko feet-like materials with dry adhesion as well as self-cleaning properties. Such refinement strategies can also include the development of hybrid structures utilizing a combination of designs found in other organisms in Mother Nature (for e.g., the mushroom-shaped structure found in the beetle). This requires improvements in the fundamental hierarchical arrangement of the gecko feet-like hairs and their inter-facial interactions with model substrata. Also, the mechanical deformations of the different gecko feet-like materials as well as how sliding velocity impacted adhesional and frictional phenomena should be studied and better understood. This will enable the engineer to develop better gecko feet-like adhesives.

You might also be interested in these eBooks

Info:

Pages:

1-8

Citation:

Online since:

May 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] http: /classics. mit. edu/Aristotle/history_anim. html.

Google Scholar

[2] B. Bhushan, Biomimetics: lessons from nature-an overview, Trans A Math Phys Eng Sci, 367, (2009) 1445-86.

Google Scholar

[3] S.N. Gorb, Origin and pathway of the epidermal secretion in the damselfly head-arresting system (Insecta: Odonata), J Insect Physiol, 44 (1998) 1053-1061.

DOI: 10.1016/s0022-1910(98)00068-7

Google Scholar

[4] E. Bauchhenss, Die Pulvillen von Calliphora erythrocephala (Diptera, Brachycera) als Adhäsionsorgane, Zoomorphologie, 93 (1979) 99–123.

DOI: 10.1007/bf00994125

Google Scholar

[5] G. Walker, A.B. Yulf, J. Ratcliffe, The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae), Journal of Zoology, 205 (1985) 297–307.

DOI: 10.1111/j.1469-7998.1985.tb03536.x

Google Scholar

[6] N.E. Stork, Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces, J Exp Biol, 88 (1980) 91–107.

DOI: 10.1242/jeb.88.1.91

Google Scholar

[7] A. B. Kesel, A. Martin, and T. Seidl, Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata, J Exp Biol, 206 (2003) 2733 -2738.

DOI: 10.1242/jeb.00478

Google Scholar

[8] A.P. Russell, T.E. Higham, A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system, Proc Biol Sci, 276 (2009) 3705-3709.

DOI: 10.1098/rspb.2009.0946

Google Scholar

[9] K. Autumn, A.M. Peattie, Mechanisms of adhesion in geckos, Integr Comp Biol, 42 (2002) 1081-90.

Google Scholar

[10] K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair, Nature, 405 (2000) 681-685.

DOI: 10.1038/35015073

Google Scholar

[11] G.C. Hill, D.R. Soto, A.M. Peattie, R.J. Full, T.W. Kenny, Orientation angle and the adhesion of single gecko setae. J R Soc Interface, 8 (2011) 926-933.

DOI: 10.1098/rsif.2010.0720

Google Scholar

[12] C. Hu and P. A. Greaney, Role of seta angle and flexibility in the gecko adhesion mechanism. Journal of Applied Physics, 116 (2014) 074302.

DOI: 10.1063/1.4892628

Google Scholar

[13] K. Autumn, A. Dittmore, D Santos, M. Spenko, M. Cutkosky, J Exp Biol, 209 (2006), 3569-3579.

DOI: 10.1242/jeb.02486

Google Scholar

[14] M. Zhou, N. Pesika, H. Zeng , Y. Tian, J. Israelachvili, Friction, 1 (2013) 114–129.

Google Scholar

[15] S. Hu, S. Lopez, P.H. Niewiarowski, Z. Xia Surface wettability plays a significant role in gecko adhesion underwater, J R Soc Interface, 76 (2012) 2781-2790.

Google Scholar

[16] W.R. Hansen, and K. Autumn, Surface wettability plays a significant role in gecko adhesion underwater, Proc Natl Acad Sci U S A, 102 (2005) 385-389.

Google Scholar

[17] K. Autumn, N. Gravish, Gecko adhesion: evolutionary nanotechnology, Philos, A. Trans, Math. Phys. Eng. Sci, 366 (2008) 1575-1590.

DOI: 10.1098/rsta.2007.2173

Google Scholar

[18] K. Autumn, C. Majidi, R.E. Groff, A. Dittmore, R. Fearing R, Effective elastic modulus of isolated gecko setal arrays. J Exp Biol, 209 (2006) 3558-3568.

DOI: 10.1242/jeb.02469

Google Scholar

[19] K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full Proc Natl Acad Sci U S A, 2002, 99, 12252-12256.

DOI: 10.1073/pnas.192252799

Google Scholar

[20] A.Y. Stark, T.W. Sullivan, P.H. Niewiarowski, The effect of surface water and wetting on gecko adhesion, J Exp Biol, 215 (2012) 3080-3086.

DOI: 10.1242/jeb.070912

Google Scholar

[21] J.B. Puthoff, M.S. Prowse, M. Wilkinson, K. Autumn, Changes in materials properties explain the effects of humidity on gecko adhesion, J Exp Biol, 213 (2010) 3699–3704.

DOI: 10.1242/jeb.047654

Google Scholar

[22] E. Arzt E, S. Gorb S, R. Spolenak, From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA, 100 (2003) 10603–10606.

DOI: 10.1073/pnas.1534701100

Google Scholar

[23] A. Peressadko, S.N. Gorb, When less is more: experimental evidence for tenacity enhancement by division of contact area, J Adhes, 80 (2004) 247–261.

DOI: 10.1080/00218460490430199

Google Scholar

[24] A.M. Peattie, R.J. Full, Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives, P Natl Acad Sci USA, 104 (2007) 18595–18600.

DOI: 10.1073/pnas.0707591104

Google Scholar

[25] M. Sitti and R.S. Fearing, Synthetic gecko foot-hair micro/nano-structures as dry adhesives, J Adhesion Science & Technology, 18 (2003) 1055-1074.

DOI: 10.1163/156856103322113788

Google Scholar

[26] A.K. Geim, S.V. Dubonos , I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, and S.Y. Shapoval, Microfabricated adhesive mimicking gecko foot-hair, Nature Materials 2 (2003) 461 – 463.

DOI: 10.1038/nmat917

Google Scholar

[27] Gorb S., Varenberg M., Peressadko A., Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure, J R Soc Interface, 4 (2007) 271-275.

DOI: 10.1098/rsif.2006.0164

Google Scholar

[28] J. Davies, S. Haq, T. Hawke, J.P. Sargent J.P., A practical approach to the development of a synthetic Gecko tape, International Journal of Adhesion & Adhesives, 29 (2009) 380–390.

DOI: 10.1016/j.ijadhadh.2008.07.009

Google Scholar

[29] E. Cheung and M. Sitti, Adhesion of Biologically Inspired Polymer Microfibers on Soft Surfaces, Langmuir, 225 (2009) 6613–6616.

DOI: 10.1021/la900997p

Google Scholar

[30] M. Jin, X. Feng, T. Sun, J. Zhai, T. Li, L. Jiang, Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Adv Mat, 17 (2005) 1977–(1981).

DOI: 10.1002/adma.200401726

Google Scholar

[31] J. Lee and R.S. Fearing Contact Self-Cleaning of Synthetic Gecko Adhesive from Polymer Microfibers. Langmuir, 2008, 24, 10587–10591.

DOI: 10.1021/la8021485

Google Scholar

[32] J. Lee, B. Bush, R. Maboudian, R.S. Fearing, Gecko-Inspired Combined Lamellar and Nanofibrillar Array for Adhesion on Nonplanar Surface, Langmuir, 25 (2009) 12449–12453.

DOI: 10.1021/la9029672

Google Scholar

[33] M. Sitti, R.S. Fearing R.S., Gecko-Inspired Combined Lamellar and Nanofibrillar Array for Adhesion on Nonplanar Surface. In Proceedings of the 2002 2nd IEE Conference on Nanotechnology, Washington, 2002, 137–140.

DOI: 10.1021/la9029672

Google Scholar

[34] B. Yurdumakan, N.R. Raravikar, P.M. Ajayan, A. Dhinojwala, Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun (Camb), 30 (2005) 3799-3801.

DOI: 10.1039/b506047h

Google Scholar

[35] L. Qu, L. Dai, Gecko-Foot-Mimetic Aligned Single-Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties, Adv Mater, 19 (2007) 3844–3849.

DOI: 10.1002/adma.200700023

Google Scholar

[36] D. Ruffatto, A. Parness, M. Spenko, Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive. J. R. Soc. Interface, 11, 20131089. http: /dx. doi. org/10. 1098/rsif. 2013. 1089.

DOI: 10.1098/rsif.2013.1089

Google Scholar

[37] https: /geckskin. umass. edu.

Google Scholar

[38] E.W. Hawkes, E.V. Eason, D.L. Christensen, M.R. Cutkosky, Human climbing with efficiently scaled gecko-inspired dry adhesives. J R Soc Interface, 12 (2005) 1-10.

DOI: 10.1098/rsif.2014.0675

Google Scholar

[39] https: /www. rt. com/news/312564-nasa-gecko-space-robot.

Google Scholar

[40] J. Subramanean and V.R. Reddy, Monitor lizards and geckos used in traditional medicine face extinction and need protection. Current Science, 102 (2012) 1248-1249.

Google Scholar