[1]
E. Rath and J. C. Richmond, The menisci: basic science and advances in treatment, Br. J. Sports Med., vol. 34, no. 4, p.252–257, (2000).
Google Scholar
[2]
G. N. Duda, F. Mandruzzato, M. Heller, J. Goldhahn, R. Moser, M. Hehli, L. Claes, and N. P. Haas, Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing, J. Biomech., vol. 34, no. 5, p.639–650, (2001).
DOI: 10.1016/s0021-9290(00)00237-2
Google Scholar
[3]
D. E. Hurwitz, D. R. Sumner, T. P. Andriacchi, and D. A. Sugar, Dynamic knee loads during gait predict proximal tibial bone distribution, J. Biomech., vol. 31, no. 5, p.423–430, (1998).
DOI: 10.1016/s0021-9290(98)00028-1
Google Scholar
[4]
T. R. Sprenger and J. F. Doerzbacher, Tibial osteotomy for the treatment of varus gonarthrosis, J Bone Jt. Surg Am, vol. 85, no. 3, p.469–474, (2003).
DOI: 10.2106/00004623-200303000-00011
Google Scholar
[5]
N. H. Yang, H. Nayeb‐Hashemi, P. K. Canavan, and A. Vaziri, Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait, J. Orthop. Res., vol. 28, no. 12, p.1539–1547, (2010).
DOI: 10.1002/jor.21174
Google Scholar
[6]
E. Pena, B. Calvo, M. A. Martinez, and M. Doblare, A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint, J. Biomech., vol. 39, no. 9, p.1686–1701, (2006).
DOI: 10.1016/j.jbiomech.2005.04.030
Google Scholar
[7]
E. Pena, B. Calvo, M. A. Martinez, D. Palanca, and M. Doblaré, Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics, Clin. Biomech., vol. 20, no. 5, p.498–507, (2005).
DOI: 10.1016/j.clinbiomech.2005.01.009
Google Scholar
[8]
E. Peña, B. Calvo, M. A. Martínez, and M. Doblaré, Computer simulation of damage on distal femoral articular cartilage after meniscectomies, Comput. Biol. Med., vol. 38, no. 1, p.69–81, (2008).
DOI: 10.1016/j.compbiomed.2007.07.003
Google Scholar
[9]
E. Peña, B. Calvo, M. A. Martínez, and M. Doblaré, Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation, Comput. Biol. Med., vol. 37, no. 3, p.376–387, (2007).
DOI: 10.1016/j.compbiomed.2006.04.004
Google Scholar
[10]
E. Peña, B. Calvo, M. A. Martinez, D. Palanca, and M. Doblaré, Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study, J. Orthop. Res., vol. 24, no. 5, p.1001–1010, (2006).
DOI: 10.1002/jor.20037
Google Scholar
[11]
G. -D. Zhu, W. -S. Guo, Q. -D. Zhang, Z. -H. Liu, and L. -M. Cheng, Finite Element Analysis of Mobile-bearing Unicompartmental Knee Arthroplasty: The Influence of Tibial Component Coronal Alignment, Chin. Med. J. (Engl)., vol. 128, no. 21, p.2873, (2015).
DOI: 10.4103/0366-6999.168044
Google Scholar
[12]
T. M. Guess, G. Thiagarajan, M. Kia, and M. Mishra, A subject specific multibody model of the knee with menisci, Med. Eng. Phys., vol. 32, no. 5, p.505–515, (2010).
DOI: 10.1016/j.medengphy.2010.02.020
Google Scholar
[13]
K. Zheng, The Effect of High Tibial Osteotomy Correction Angle on Cartilage and Meniscus Loading Using Finite Element Analysis, (2014).
Google Scholar
[14]
B. Zielinska and T. L. H. Donahue, 3D finite element model of meniscectomy: changes in joint contact behavior, J. Biomech. Eng., vol. 128, no. 1, p.115–123, (2006).
DOI: 10.1115/1.2132370
Google Scholar
[15]
C. G. Armstrong, W. M. Lai, and V. C. Mow, An analysis of the unconfined compression of articular cartilage, J. Biomech. Eng., vol. 106, no. 2, p.165–173, (1984).
DOI: 10.1115/1.3138475
Google Scholar
[16]
G. Li, O. Lopez, and H. Rubash, Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis, J. Biomech. Eng., vol. 123, no. 4, p.341–346, (2001).
DOI: 10.1115/1.1385841
Google Scholar
[17]
P. S. Donzelli, R. L. Spilker, G. A. Ateshian, and V. C. Mow, Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure, J. Biomech., vol. 32, no. 10, p.1037–1047, (1999).
DOI: 10.1016/s0021-9290(99)00106-2
Google Scholar
[18]
S. Hirokawa and R. Tsuruno, Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament, J. Biomech., vol. 33, no. 9, p.1069–1077, (2000).
DOI: 10.1016/s0021-9290(00)00073-7
Google Scholar
[19]
T. L. H. Donahue, M. L. Hull, M. M. Rashid, and C. R. Jacobs, A finite element model of the human knee joint for the study of tibio-femoral contact, J. Biomech. Eng., vol. 124, no. 3, p.273–280, (2002).
DOI: 10.1115/1.1470171
Google Scholar
[20]
G. Li, J. Gil, A. Kanamori, and S. -Y. Woo, A validated three-dimensional computational model of a human knee joint, J. Biomech. Eng., vol. 121, no. 6, p.657–662, (1999).
DOI: 10.1115/1.2800871
Google Scholar
[21]
P. S. Walker and M. J. Erkiuan, The role of the menisci in force transmission across the knee., Clin. Orthop. Relat. Res., vol. 109, p.184–192, (1975).
DOI: 10.1097/00003086-197506000-00027
Google Scholar