A Three Dimensional Finite Element Analysis of Mechanical Stresses in the Human Knee Joint: Problem of Cartilage Destruction

Article Preview

Abstract:

Knee malalignment is considered one of the key biomechanical factors that influence the progression of knee osteoarthritis. In this context, a three-dimensional Finite Element model of the knee joint is developed and used to investigate the effect of the frontal plane femoro-tibial angle as well as the body weight load on the stress distribution in the knee cartilage and menisci. Therefore, the knee joint model is obtained through CAD software. Bones, articular cartilage and menisci are considered linear, elastic and isotropic materials. Ligaments were modelled using connectors. Consequently, contact pressures and equivalent stress (von-Mises) are calculated in Abaqus software. This model was validated using experimental and numerical results obtained by other authors. Results of this work demonstrated that; compressive stress and contact pressure on the medial compartment of the knee joint were found to be larger compared to those in the lateral compartment when the femoro-tibial angle and the body weight load increased from 0° to 12° varus and 500 N to 1250 N, respectively, suggesting that these two parameters might be risk factors for developing medial compartment knee osteoarthritis.

You might also be interested in these eBooks

Info:

Pages:

29-39

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Rath and J. C. Richmond, The menisci: basic science and advances in treatment, Br. J. Sports Med., vol. 34, no. 4, p.252–257, (2000).

Google Scholar

[2] G. N. Duda, F. Mandruzzato, M. Heller, J. Goldhahn, R. Moser, M. Hehli, L. Claes, and N. P. Haas, Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing, J. Biomech., vol. 34, no. 5, p.639–650, (2001).

DOI: 10.1016/s0021-9290(00)00237-2

Google Scholar

[3] D. E. Hurwitz, D. R. Sumner, T. P. Andriacchi, and D. A. Sugar, Dynamic knee loads during gait predict proximal tibial bone distribution, J. Biomech., vol. 31, no. 5, p.423–430, (1998).

DOI: 10.1016/s0021-9290(98)00028-1

Google Scholar

[4] T. R. Sprenger and J. F. Doerzbacher, Tibial osteotomy for the treatment of varus gonarthrosis, J Bone Jt. Surg Am, vol. 85, no. 3, p.469–474, (2003).

DOI: 10.2106/00004623-200303000-00011

Google Scholar

[5] N. H. Yang, H. Nayeb‐Hashemi, P. K. Canavan, and A. Vaziri, Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait, J. Orthop. Res., vol. 28, no. 12, p.1539–1547, (2010).

DOI: 10.1002/jor.21174

Google Scholar

[6] E. Pena, B. Calvo, M. A. Martinez, and M. Doblare, A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint, J. Biomech., vol. 39, no. 9, p.1686–1701, (2006).

DOI: 10.1016/j.jbiomech.2005.04.030

Google Scholar

[7] E. Pena, B. Calvo, M. A. Martinez, D. Palanca, and M. Doblaré, Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics, Clin. Biomech., vol. 20, no. 5, p.498–507, (2005).

DOI: 10.1016/j.clinbiomech.2005.01.009

Google Scholar

[8] E. Peña, B. Calvo, M. A. Martínez, and M. Doblaré, Computer simulation of damage on distal femoral articular cartilage after meniscectomies, Comput. Biol. Med., vol. 38, no. 1, p.69–81, (2008).

DOI: 10.1016/j.compbiomed.2007.07.003

Google Scholar

[9] E. Peña, B. Calvo, M. A. Martínez, and M. Doblaré, Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation, Comput. Biol. Med., vol. 37, no. 3, p.376–387, (2007).

DOI: 10.1016/j.compbiomed.2006.04.004

Google Scholar

[10] E. Peña, B. Calvo, M. A. Martinez, D. Palanca, and M. Doblaré, Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study, J. Orthop. Res., vol. 24, no. 5, p.1001–1010, (2006).

DOI: 10.1002/jor.20037

Google Scholar

[11] G. -D. Zhu, W. -S. Guo, Q. -D. Zhang, Z. -H. Liu, and L. -M. Cheng, Finite Element Analysis of Mobile-bearing Unicompartmental Knee Arthroplasty: The Influence of Tibial Component Coronal Alignment, Chin. Med. J. (Engl)., vol. 128, no. 21, p.2873, (2015).

DOI: 10.4103/0366-6999.168044

Google Scholar

[12] T. M. Guess, G. Thiagarajan, M. Kia, and M. Mishra, A subject specific multibody model of the knee with menisci, Med. Eng. Phys., vol. 32, no. 5, p.505–515, (2010).

DOI: 10.1016/j.medengphy.2010.02.020

Google Scholar

[13] K. Zheng, The Effect of High Tibial Osteotomy Correction Angle on Cartilage and Meniscus Loading Using Finite Element Analysis, (2014).

Google Scholar

[14] B. Zielinska and T. L. H. Donahue, 3D finite element model of meniscectomy: changes in joint contact behavior, J. Biomech. Eng., vol. 128, no. 1, p.115–123, (2006).

DOI: 10.1115/1.2132370

Google Scholar

[15] C. G. Armstrong, W. M. Lai, and V. C. Mow, An analysis of the unconfined compression of articular cartilage, J. Biomech. Eng., vol. 106, no. 2, p.165–173, (1984).

DOI: 10.1115/1.3138475

Google Scholar

[16] G. Li, O. Lopez, and H. Rubash, Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis, J. Biomech. Eng., vol. 123, no. 4, p.341–346, (2001).

DOI: 10.1115/1.1385841

Google Scholar

[17] P. S. Donzelli, R. L. Spilker, G. A. Ateshian, and V. C. Mow, Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure, J. Biomech., vol. 32, no. 10, p.1037–1047, (1999).

DOI: 10.1016/s0021-9290(99)00106-2

Google Scholar

[18] S. Hirokawa and R. Tsuruno, Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament, J. Biomech., vol. 33, no. 9, p.1069–1077, (2000).

DOI: 10.1016/s0021-9290(00)00073-7

Google Scholar

[19] T. L. H. Donahue, M. L. Hull, M. M. Rashid, and C. R. Jacobs, A finite element model of the human knee joint for the study of tibio-femoral contact, J. Biomech. Eng., vol. 124, no. 3, p.273–280, (2002).

DOI: 10.1115/1.1470171

Google Scholar

[20] G. Li, J. Gil, A. Kanamori, and S. -Y. Woo, A validated three-dimensional computational model of a human knee joint, J. Biomech. Eng., vol. 121, no. 6, p.657–662, (1999).

DOI: 10.1115/1.2800871

Google Scholar

[21] P. S. Walker and M. J. Erkiuan, The role of the menisci in force transmission across the knee., Clin. Orthop. Relat. Res., vol. 109, p.184–192, (1975).

DOI: 10.1097/00003086-197506000-00027

Google Scholar