[1]
L. Zhang, Z. Cao, T. Bai, L. Carr, J. Ella-Menye, C. Irvin, B. D. Ratner, S. Jiang. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction, Nature Biotechnology, 31, 553–556, (2013).
DOI: 10.1038/nbt.2580
Google Scholar
[2]
L. Tang, T.A. Jennings, J.W. Eaton. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Nat Acad Sci. 95, (1998), 8841–8846.
DOI: 10.1073/pnas.95.15.8841
Google Scholar
[3]
W. K. Ward,. A review of the foreign-body response to subcutaneously-implanted devices: The role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol. 2, (2008), 768–777.
DOI: 10.1177/193229680800200504
Google Scholar
[4]
B. Rolfe, J. Mooney, B. Zhang, S. Jahnke, S.J. Le, Y.Q. Chau, Q. Huang, G. Wang, H. Campbell, J. Campbell. The fibrotic response to implanted biomaterials: Implications for tissue engineering. In: Eberli D., editor. Regenerative Medicine and Tissue Engineering: Cells and Biomaterials. Rijeka, Croatia: InTech Publishing; (2011).
DOI: 10.5772/21790
Google Scholar
[5]
J. Xue, J. Gao, L. Tang. A hybrid computational model for phagocyte transmigration. In: BioInformatics and BioEngineering, 8th IEEE International Conference On. Boston: IEEE; 2008. p.1–6.
DOI: 10.1109/bibe.2008.4696731
Google Scholar
[6]
J. Su, M. Todorov, H.P. Gonzales, L. Perkins, H. Kojouharov, H. Weng, L. Tang. A predictive tool for foreign body fibrotic reactions using 2-dimensional computational model. Open Access Bioinformatics. 3, (2011), 19–35.
DOI: 10.2147/oab.s14254
Google Scholar
[7]
J. Su, M. Todorov, H.P. Gonzales, L. Perkins, H. Kojouharov, H. Weng, L. Tang. A mathematical model for foreign body reactions in 2D. Int J Comput. Math. 88, (2011), 610–633.
DOI: 10.1080/00207161003640035
Google Scholar
[8]
J. Yang, J. Su, L. Owens, A. Ibraguimov, L. Tang. A computational model of fibroblast and macrophage spatial/temporal dynamics in foreign body reactions. J Immunol. Methods. 397 (1–2), 2013, 37–46.
DOI: 10.1016/j.jim.2013.08.013
Google Scholar
[9]
L. Tang, J.W. Eaton. Natural responses to unnatural materials: A molecular mechanism for foreign body reactions. Mol Med. 6 (5), 1999, 351–358.
DOI: 10.1007/bf03402124
Google Scholar
[10]
J. Zdolsek, J. Eaton, L. Tang. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans. J Transl. Med. 5(1), 2007 31.
DOI: 10.1186/1479-5876-5-31
Google Scholar
[11]
L. Tang, W. Jiang, S.E. Welty. The participation of p- and e-selectins onbiomaterial-mediated tissue responses. J Biomed Mater Res. 62 (4), 2002, 471–477.
DOI: 10.1002/jbm.10271
Google Scholar
[12]
M. Kang, J.X. Gao, L. Tang. Computational modeling of phagocyte transmigration during biomaterial-mediated foreign body responses. In: Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference On. Hong Kong: IEEE; 2010. p.609–612.
DOI: 10.1109/bibm.2010.5706638
Google Scholar
[13]
L. Tang, Y. Wu, R.B. Timmons. Fibrinogen adsorption and host tissue responses to plasma functionalized surfaces. J Biomed Mater Res. 42 (1) 1998, 156–163.
DOI: 10.1002/(sici)1097-4636(199810)42:1<156::aid-jbm19>3.0.co;2-j
Google Scholar
[14]
P.T. Thevenot, D.W. Baker, H. Weng, M.W. Sun, L. Tang. The pivotal role of fibrocytes and mast cells in mediating fibrotic reactions to biomaterials. Biomaterials. 32 (33), 2011, 8394–8403.
DOI: 10.1016/j.biomaterials.2011.07.084
Google Scholar
[15]
S. Yamasaki, ST. Regulation of mast cell activation through fcepsilonri. ChemImmunol Allergy. 87, 2005, 22–31.
Google Scholar
[16]
J.K. Zhou, Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan, China. (1986).
Google Scholar
[17]
A. Arikoglu, and I. Ozkol, Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method, Compos Struct. 92, (2010), 3031-3039.
DOI: 10.1016/j.compstruct.2010.05.022
Google Scholar
[18]
Z. Odibat, C. Bertelle, M. A. Aziz-Alaoui, and G.H.E. Duchampd, A multi-step differential transform method and application to non-chaotic or chaotic systems. Comput. Math. Appl. 59, (2010), 1462-1472.
DOI: 10.1016/j.camwa.2009.11.005
Google Scholar
[19]
P. Salehi, H. Yaghoobi, and M. Torabi, Application of the differential transformation method and variational iteration method to large deformation of cantilever beams under point load, Journal of Mechanical Science and Technology, 26, (2012).
DOI: 10.1007/s12206-012-0730-y
Google Scholar
[20]
M. Madani, M. Fathizadeh, Y. Khan and A. Yildirim, On the coupling of the homotopy perturbation method and Laplace transformation, J. Mathematical and Computer Modelling, 53 (9-10), (2011), 1937-(1945).
DOI: 10.1016/j.mcm.2011.01.023
Google Scholar
[21]
D. Carlos, A. Sa-Nunes, L. de Paula, C. Matias-Peres, M.C. Jamur, C. Oliver, M.F. Serra, M.A. Martins, L.H. Faccioli. Histamine modulates mast cell granulation through an indirect mechanism in a model ige-mediated reaction. Eur J Immunol. 36 (6), 2006, 1494–1503.
DOI: 10.1002/eji.200535464
Google Scholar
[22]
C. K Chen, and S.H. Ho, Solving partial differential equations by two dimensional differential transform. Appl. Math. Comput. 106, 1999, 171-179.
DOI: 10.1016/s0096-3003(98)10115-7
Google Scholar
[23]
M. Thongmoon, and S. Pusjuso, The numerical solution of differential transform method and Laplace transform method for a system of differential equations. Nonlinear Anal. Hybrid Syst. 4, 2010, 425-431.
DOI: 10.1016/j.nahs.2009.10.006
Google Scholar
[24]
M. Kang, L. Tang, J. Gao, Computational modeling of phagocyte transmigration for foreign body responses to subcutaneous biomaterial implants in mice, BMC Bioinformatics 111 (17), 2016, 1-13.
DOI: 10.1186/s12859-016-0947-3
Google Scholar