[1]
Lee, R.; Khoueir, Z.; Tsikata, E.; Chodosh, J.; Dohlman, C. H.;Chen, T. C. Long-term Visual Outcomes and Complications of Boston Keratoprosthesis Type II Implantation. Ophthalmology 2017, 124, 27 – 35.
DOI: 10.1016/j.ophtha.2016.07.011
Google Scholar
[2]
de Oliveira, L. A.; Magalhaes, F. P.; Hirai, F. E.; de Sousa, L. B. ̃Experience with Boston Keratoprosthesis Type 1 in the Developing World. Can. J. Ophthalmol. 2014, 49, 351 −357.
Google Scholar
[3]
Ferreiro, A. V. S.; Bellido, L. M. Keratoprosthesis in Cornea and Ocular Surface Diseases. Arch. Soc. Esp. Oftalmol. 2013, 88, 327 −328.
Google Scholar
[4]
Griffith, M.; Polisetti, N.; Kuffova, L.; Gallar, J.; Forrester, J.;Vemuganti, G. K.; Fuchsluger, T. A. Regenerative Approaches as Alternatives to Donor Allografting for Restoration of Corneal Function. Ocul. Surf. 2012, 10, 170 −183.
DOI: 10.1016/j.jtos.2012.04.004
Google Scholar
[5]
Laattala, K.; Huhtinen, R.; Puska, M.; Arstila, H.; Hupa, L.; Kellomaki, M.; Vallittu, P. K. Bioactive Composite for Keratopros-thesis Skirt. J. Mech. Behav. Biomed. Mater. 2011, 4, 1700 −1708.
DOI: 10.1016/j.jmbbm.2011.05.025
Google Scholar
[6]
Deng, C.; Li, F.; Hackett, J. M.; Chaudhry, S. H.; Toll, F. N.; Toye, B.; Hodge, W.; Griffith, M. Collagen and Glycopolymer Based Hydrogel for Potential Corneal Application. Acta Biomater. 2010, 6, 187 −194.
DOI: 10.1016/j.actbio.2009.07.027
Google Scholar
[7]
Dohlman TH, Omoto M, Hua J, Stevenson W, Lee SM, Chauhan SK, et al. VEGF-trap aflbercept signifiantly improves long-term graft survival in high-risk corneal transplantation. Transplantation 2015; 99:678-686.
DOI: 10.1097/tp.0000000000000512
Google Scholar
[8]
Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering.Prog Polym Sci. 2016; 1;53:86-168.
Google Scholar
[9]
https://www.cochrane.org/CD009561/EYES_artificial-corneal-devices-versus-human-donor-corneas-for-people-undergoing-repeat-corneal-transplantation.
Google Scholar
[10]
Chen J1, Li Q, Xu J, Huang Y, Ding Y, Deng H, Zhao S, Chen R. Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea. Artif Organs. 2005 ;29(2):104-13.
DOI: 10.1111/j.1525-1594.2005.29021.x
Google Scholar
[11]
http://www.spie.org/news/artificial-corneas-advance?SSO=1.
Google Scholar
[12]
J. S. Choi and H. S. Yoo, Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties,, Journal of Biomedical Materials Research, Part A, vol. 95, no. 2, p.564–573, (2010).
DOI: 10.1002/jbm.a.32848
Google Scholar
[13]
Liu, D., Nikoo, M., Boran, G., Zhou, P. & Regenstein, J. M. Collagen and Gelatin. Annu Rev Food Sci T 6, 527–557,.
DOI: 10.1146/annurev-food-031414-111800
Google Scholar
[14]
Parenteau-Bareil, R. et al. Comparative Study of Bovine, Porcine and Avian Collagens for the Production of a Tissue Engineered Dermis. Acta Biomater. 7, 3757–3765,.
DOI: 10.1016/j.actbio.2011.06.020
Google Scholar
[15]
Giovani AM Croci AT Oliveira CR Comparative study of cryopreserved bone tissue and tissue preserved in a 98% glycerol solution. Clinics (Sao Paulo) . 2006;61:565–570.
DOI: 10.1590/s1807-59322006000600013
Google Scholar
[16]
Melgardt de Villiers, 2009. Viscosity- Inducing Agent.Chapter 19 online. 231-250, https://www.researchgate.net/publication/318380329_Viscosity-inducing_Agents.
Google Scholar
[17]
Gupta SK, Agarwal R, Srivastava S, 2014. Textbook on Clinical Ocular Pharmacology and Theurapetics, 1st edition, Jaypee Brothers Medical Publishers, Daryagan, 241.
Google Scholar
[18]
S. Karimi, A. Abdulkhani, P.M. Tahir, A. Dufresne, Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites, Int. J. Biol. Macromol. 91 (2016) 1040 –1044, https://doi.org/10.1016/j.ijbiomac.2016.06.061.
DOI: 10.1016/j.ijbiomac.2016.06.061
Google Scholar
[19]
Yuyu Long, Xuan Zhao, Sa Liu, Min Chen, Bingqian Liu, Jian Ge, Yong-Guang Jia, and Li Ren, 2018. Collagen − Hydroxypropyl Methylcellulose Membranes for Corneal Regeneration, ACS Omega, 3, 1269-1275.
DOI: 10.1021/acsomega.7b01511
Google Scholar
[20]
Brian M. Murphy, Jennifer D'Antonio, Mark C. Manning, Wasfi Al-Azzam, 2014. Use of the Amide II Infrared Band of Proteins for Secondary Structure Determination and Comparability of Higher Order Structure, Current Pharmaceutical Biotechnology,Volume 15, Issue 9 , 2014.DOI : 10.2174/1389201015666141012181609.
DOI: 10.2174/1389201015666141012181609
Google Scholar
[21]
https://pdfs.semanticscholar.org/b0b8/3a1709eb661bc5ef2c0280eebbfeb7686a00.pdf?_ga=2.90945311.485373490.1560908329-1983334744.1560908329, Cellular Adaptations, Cell Injury and Cell Death, Chapter 1, General Pathology, Unit 1, (2019).
Google Scholar
[22]
Spielmann, H.; Hoffmann, S.; Liebsch, M.; Botham, P.; Fentem, J.H.; Eskes, C.; Roguet, R.; Cotovio, J.; Cole, T.;Worth, A.; et al. The ECVAM international validation study on in vitro tests for acute skin irritation: Report on the validity of the EPISKIN and EpiDerm assays and on the Skin Integrity Function Test. Altern. Lab. Anim.2007, 35, 559–601.
DOI: 10.1177/026119290703500614
Google Scholar
[23]
El-Sherbiny IM, Yacoub MH (2013). Hydrogel scaffolds for tissue engineering: Progress and Challenges, Global Cardiology Science and Practices, A Qatar Foundation of Academic Journal,38, 317-342.
DOI: 10.5339/gcsp.2013.38
Google Scholar